Prof. Dr. Niels Olsen Saraiva Câmara

Título (Academic title): Professor Titular (Full Professor)
Laboratório (Laboratory): Sala 238/240
Telefone (Phone): 55 (11) 3091-7388
E-mail: niels@icb.usp.br
Lattes: http://lattes.cnpq.br/8098379714093877
Researcher ID: http://www.researcherid.com/rid/G-8336-2011
Site: http://www.icb.usp.br/~niels/

Alunos (Students) Pesquisadores (Associated Researchers)

Alunos: Joao Victor Ziroldo Lopes (IC), Natalia Tejada (IC), Jean de Lima (M), Barbara Padovani (M), Vitor Targhetta (M), Daniel Marconi (DD), Paulo José Basso (D), Omar Amorocho (D), Matheus Fragas (D), Amanda Campelo (D), Jefferson Leite (D), Lais Cavalieri (D), Tâmisa Honda (D) e Camila Morales (D).

Pesquisadores: Cristiane Naffah (PD), Camila Pontes (PD), Theresa Ramalho (PD), Ingrid Watanabe (PD), Orestes Foresto Neto (PD), Magaiver Andrade (PD), Fernanda Roncon (PD) e Silviene Novikoff (PD).

Apoio técnico: Meire Ioshie Hiyane (Especialista de Laboratório), Eloisa Martins (TT2) e Izabella Xavier (TT2).

Linha de pesquisa (Research Lines)

Imunometabolismo: O metabolismo celular está intimamente relacionado as alterações fenotípicas e funcionais das células do sistema imune. A glicólise, beta-oxidação de lipídeos, glutaminólise e fosforilação oxidativas são usadas por diferentes células em diferentes momentos de diferenciação, ontogênese e polarização. Ainda, modificações físicas nas mitocôndrias, como fissão e fusão, influencia o perfil metabólico e funcional das células do sistema imune. Da mesma forma, drogas que inibam ou favoreçam uma via em detrimento da outra pode modificar o perfil fenotípico e funcional das células do sistema imune. O controle das vias metabólicas é mediado por moléculas como a Sirtuína e envolve regulação epigenética. Sensores metabólicos como AMPK, mTOR e HIF modulam também esta reprogramação metabólica nas células do sistema imune.  Finalmente, mudanças metabólicas podem afetar respostas fundamentais para a sobrevivência das células como as vias de reparo de DNA. O nosso grupo estuda estas vias em diferentes modelos de inflamação, incluindo em Zebrafish, na intenção de desvendar os mecanismos envolvidos no crosstalk metabolismo celular-resposta imune.

Immunometabolism: Cell metabolism is closely related to phenotypic and functional changes in immune system cells. Glycolysis, lipid beta-oxidation, glutaminolysis and oxidative phosphorylation are used by different cells at different times of differentiation, ontogenesis and polarization. Also, physical modifications in mitochondria, such as fission and fusion, influence the metabolic and functional profile of immune system cells. Similarly, drugs that inhibit or favor one pathway over the other can modify the phenotypic and functional profile of the cells. Control of metabolic pathways is mediated by molecules such as sirtuin and involves epigenetic regulation. Metabolic sensors such as AMPK, mTOR and HIF also modulate this metabolic reprogramming in immune system cell. Finally, metabolic changes can affect fundamental responses to cell survival such as DNA repair pathways. Our group studies these pathways in different inflammation models, including in Zebrafish, with the intention of unraveling the mechanisms involved in crosstalk cellular metabolism-immune response.

 

Interação microbiota, obesidade, ácidos graxos e inflamação: Nos últimos anos, vários grupos de pesquisa nacionais e internacionais, incluído o nosso, vêm mostrando de forma consistente o papel da resposta inflamatória em algumas doenças renais. Apesar dos avanços terem sido mais proeminente em modelos animais, os dados gerados indicam fortemente que as lesões renais agudas e crônicas são influenciadas pela resposta imune, considerada estéril, dirigida contra compartimentos no néfron. Considerada hoje uma epidemia, as doenças renais apresentam enorme impacto social e econômico com grande morbi-mortalidade para os pacientes. Mais recentemente, novas moléculas, hormônios e subtipos celulares foram identificados e mostrados participar de várias doenças inflamatórias. Com as mudanças de estilo de vida, novos fatores foram acrescentados a lista de co-morbidades as doenças renais, como a obesidade. Juntamente com isso, novos hormônios relacionados à adipogenicidade, alterações de microflora intestinal, produtos da fermentação destas bactérias (ácidos graxos de cadeia curto) e moléculas inflamatórias passaram a ter um papel importante na fisiopatogenia da lesão renal.

Microbiota, obesity, fatty acids and inflammation: In recent years, several national and international research groups, including ours, have consistently shown the role of the inflammatory response in some kidney diseases. Although advances have been more prominent in animal models, the data generated strongly indicate that acute and chronic renal injuries are considered sterile immune response directed against compartments in the nephron. Considered today an epidemic, kidney diseases have high social and economic impact with sustained increased patients’ morbidity and mortality. More recently, new molecules, hormones and cell subtypes have been identified and shown to participate in various inflammatory diseases. With lifestyle changes, new factors have been added to the list of comorbidities for kidney diseases such as obesity. In addition, new hormones related to adipogenicity, changes in intestinal microflora, fermentation products of these bacteria (short chain fatty acids) and inflammatory molecules have all played an important role in the pathophysiology of kidney injury.

 

Papel da resposta imune inata e adaptativa na lesão renal aguda: A lesão de isquemia/reperfusão (IR) é o principal fator etiológico da insuficiência renal aguda (IRA), e forte fator de impacto negativo para o desenvolvimento da nefropatia crônica do enxerto. Recentemente, alguns estudos mostraram que a lesão de IR desencadeia uma resposta inflamatória, participando varias células e moléculas do sistema imune. Nós nos interessamos a estudar o papel dos receptores símiles ao Toll, ao Nod e os inflamassomas e, mas especificamente, o papel do linfócitos T, neutrófilos e macrófagos na patogênese desta lesão. Nossos resultados demonstram que as vias TLR4, NOD1 e NLRP3 estão precocemente envolvidos na lesão renal inicial e que o subtipo linfocitário T CD4+ Th1 é o principal agente agressor desta lesão.

Role of innate and adaptive immune response in acute kidney injury: Ischemia and reperfusion injury (IRI) is the main etiological factor of acute renal injury (AKI), and a strong negative impact factor for the development of chronic nephropathy. Recently, some studies have shown that IRI injury triggers an inflammatory response, involving several cells and molecules of the immune system. We are interested in studying the role of Toll-like, Nod-like and Inflammasome receptors and, specifically, the role of lymphocytes, neutrophils and macrophages in the pathogenesis of this lesion. Our results demonstrate that the TLR4, NOD1 and NLRP3 pathways are early involved in the initial renal injury and that the CD4 + Th1 T lymphocyte subtype is the main aggressor of this lesion.

 

Modelagem de doenças em Zebrafish: O zebrafish (Danio rerio), também conhecido como paulistinha ou peixe-zebra, tem muitas vantagens como modelo experimental. Este peixe possui a interessante característica de realizar fertilização externa com ovos transparentes que, quando fertilizados, se desenvolvem rapidamente podendo formar um embrião completo em 24 horas. A alta capacidade de regeneração do zebrafish de diversos órgãos como o sistema nervoso central, coração, rins e fígado, torna o modelo interessante para estudar doenças inflamatórias. Em relação ao sistema imunológico do zebrafish, eles compartilham células análogas aos neutrófilos, macrófagos, células dendríticas, linfócitos B e T dos mamíferos. O laboratório estuda a resposta imune em modelos de doenças inflamatórias em Zebrafish como ferramenta de buscar mecanismos para doenças e ações de novas drogas terapêuticas.

Zebrafish disease modeling: Zebrafish (Danio rerio), also known as “paulistinha”, has many advantages as an experimental model. Zebrafish has the interesting feature of performing external fertilization with transparent eggs which, when fertilized, develop rapidly and can form a complete embryo within 24 hours. The high regenerative capacity of zebrafish from various organs such as the central nervous system, heart, kidneys and liver, makes the model interesting for studying inflammatory diseases. With respect to the zebrafish immune system, they share mammalian neutrophil-like cells, macrophages, dendritic cells, B and T lymphocytes. The laboratory studies the immune response in inflammatory disease models in Zebrafish as a tool to search for disease mechanisms and actions of new therapeutic drugs.

 

Células-Tronco e regeneração renal: As células-tronco hematopoiéticas e as não hematopoiéticas, as células-tronco mesenquimais, são células com plasticidade suficiente para regenerar tecidos e restaurar as funções fisiológicas em órgãos danificados. O laboratório estuda os mecanismos imunológicos envolvidos no tráfego destas células para dentro do rim em modelos de doença renal aguda e crônica, sua plasticidade em se diferenciar em células tubulares e sua capacidade de modular resposta inflamatória em modelos de transplante de órgãos e lesão aguda renal.

Stem Cells and Renal Regeneration: Hematopoietic and non-hematopoietic stem cells, mesenchymal stem cells, are cells with sufficient plasticity to regenerate tissues and restore physiological functions in damaged organs. The laboratory studies the immunological mechanisms involved in the movement of these cells into the kidney in models of acute and chronic kidney diseases, their plasticity in differentiating into tubular cells, and their ability to modulate inflammatory response in organ transplant and acute kidney injury models.


Células Reguladoras e transplante de órgãos: Atualmente, a indução de tolerância permanece como a única estratégia para aumentar a sobrevida dos enxertos sem ocasionar danos tóxicos ao enxerto. As células T CD4+CD25+, ou T reguladoras, e as células NKT foram bem caracterizadas nesta última década, tendo sido descritas em humanos, em doenças autoimunes, infecções virais, tumores e transplante de órgãos. O laboratório interessa no estudo de sua frequência, seu padrão de produção de citocinas, sua especificidade e de seu tráfego em humanos, principalmente em transplante de rim.

Regulatory Cells and Organ Transplantation: Induction of tolerance remains the only strategy to increase graft survival without causing toxic graft damage. CD4 + CD25 + T cells, or regulatory T, and NKT cells have been well characterized in the last decades and have been described in humans, autoimmune diseases, viral infections, tumors and organ transplantation. The laboratory is interested in studying its frequency, its pattern of cytokine production, its specificity and its traffic in humans, especially in kidney transplantation.


Genes protetores: heme-oxigenase 1 e rim: A heme oxigenase 1 (HO-1) é considerada um gene protetor com atividades anti-apoptóticas, anti-proliferativas e anti-inflamatórias. A hiperexpressão de HO-1 em rim submetidos a IR limita os danos ocasionados pela isquemia. Em modelos experimentais de rejeição crônica, a HO-1 é capaz de suprimir as lesões ateroscleróticas, patognomônicas da lesão crônica. Entretanto, a expressão de HO-1 pode ser regulada por um polimorfismo no seu promotor e pelo uso de imunossupressores. O laboratório tem interesse em estudar o papel da HO-1 nas lesões renais agudas, e nas varias situações clínicas pós-transplante renal, em modelos “in vitro” de transdiferenciação epitélio-mesenquimal e “in vivo” de lesão renal aguda.

Protective genes: heme oxygenase 1 and kidney: Heme oxygenase 1 (HO-1) is considered a protective gene with anti-apoptotic, anti-proliferative and anti-inflammatory activities. Overexpression of HO-1 in kidney undergoing IR limits the damage caused by ischemia. In experimental models of chronic rejection, HO-1 is capable of suppressing atherosclerotic lesions, pathognomonic of chronic injury. However, HO-1 expression may be regulated by a polymorphism in its promoter and by the use of immunosuppressants. The laboratory is interested in studying the role of HO-1 in acute renal injury, and in various clinical situations following renal transplantation, in in vitro models of epithelia-to-mesenchymal transdifferentiation and in vivo acute kidney injury

 

Financiamento das pesquisas (Financial Support): FAPESP, CNPq, ROTRF, Genzyme, NIH.

 

Principais publicações nos últimos 5 anos (Main publications in the last 5 years) http://www.researcherid.com/rid/G-8336-2011

1.         Breda CNS, Davanzo GG, Basso PJ, Saraiva Câmara NO, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol. 2019 Jun 15;26:101255. doi: 10.1016/j.redox.2019.101255. [Epub ahead of print] Review.

2.         Fachi JL, Felipe JS, Pral LP, da Silva BK, Corrêa RO, de Andrade MCP, da Fonseca DM, Basso PJ, Câmara NOS, de Sales E Souza ÉL, Dos Santos Martins F, Guima SES, Thomas AM, Setubal JC, Magalhães YT, Forti FL, Candreva T, Rodrigues HG, de Jesus MB, Consonni SR, Farias ADS, Varga-Weisz P, Vinolo MAR. Butyrate Protects Mice from Clostridium difficile-Induced Colitis through an HIF-1-Dependent Mechanism. Cell Rep. 2019 Apr 16;27(3):750-761.e7. doi: 10.1016/j.celrep.2019.03.054.

3.         Vieira RS, Castoldi A, Basso PJ, Hiyane MI, Câmara NOS, Almeida RR. Butyrate Attenuates Lung Inflammation by Negatively Modulating Th9 Cells. Front Immunol. 2019 Jan 29;10:67. doi: 10.3389/fimmu.2019.00067. eCollection 2019.

4.         Felizardo RJF, Watanabe IKM, Dardi P, Rossoni LV, Câmara NOS. The interplay among gut microbiota, hypertension and kidney diseases: The role of short-chain fatty acids. Pharmacol Res. 2019 Mar;141:366-377. doi: 10.1016/j.phrs.2019.01.019. Epub 2019 Jan 10. Review.

5.         Correa-Costa M, Gallo D, Csizmadia E, Gomperts E, Lieberum JL, Hauser CJ, Ji X, Wang B, Câmara NOS, Robson SC, Otterbein LE. Carbon monoxide protects the kidney through the central circadian clock and CD39. Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2302-E2310. doi: 10.1073/pnas.1716747115. Epub 2018 Feb 20.

6.         Angela Castoldi; Vinicius Andrade-Oliveira; Cristhiane Favero Aguiar; Mariane Tami Amano; Jennifer Lee; Marcelli Terumi Miyagi; Marcela Teatin Latância; Tarcio Teodoro Braga; Marina Burgos Da Silva; Aline Ignácio; Joanna Darck Carola C. Lima; Flavio V. Loures, José Antonio T. Albuquerque; Marina Barguil Macêdo; Rafael Ribeiro Almeida; Jonas W. Gaiarsa; Luis A. Luévano Martínez; Thiago Belchior; Meire Ioshie Hiyane; Gordon D. Brown; Marcelo A. Mori; Christian Hoffmann; Marília Seelaender; Willian T. Festuccia; Pedro Manoel Moraes-Vieira; Niels Olsen Saraiva Câmara. Dectin-1 activation exacerbates obesity and insulin resistance in absence of MyD88. Cell Rep. 2017 Jun 13;19(11):2272-2288. doi: 10.1016/j.celrep.2017.05.059.

7.         Davanso MR, Latz E, Franklin BS, Kowaltowski AJ, Camara NO. Soluble Uric Acid Activates the NLRP3 Inflammasome. Sci Rep. 2017 Jan 13;7:39884. doi: 10.1038/srep39884.

8.         Câmara No, Iseki K, Kramer H, Liu Zh, Sharma K. Kidney disease and obesity: epidemiology, mechanisms and treatment. Nat Rev Nephrol. 2017 Mar;13(3):181-190. doi: 10.1038/nrneph.2016.191.

9.         Bruder-Nascimento T, Ferreira NS, Zanotto CZ, Ramalho F, Pequeno IO, Olivon VC, Neves KB, Alves-Lopes R, Campos E, Silva CA, Fazan R, Carlos D, Mestriner FL, Prado D, Pereira FV, Braga T, Luiz JP, Cau SB, Elias PC, Moreira AC, Câmara NO, Zamboni DS, Alves-Filho JC, Tostes RC. NLRP3 Inflammasome Mediates Aldosterone-Induced Vascular Damage. Circulation. 2016 Dec 6;134(23):1866-1880.

10.       Costa FR, Françozo MC, de Oliveira GG, Ignacio A, Castoldi A, Zamboni DS, Ramos SG, Câmara NO, de Zoete MR, Palm NW, Flavell RA, Silva JS, Carlos D. Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset. J Exp Med. 2016 Jun 27;213(7):1223-39. doi: 10.1084/jem.20150744.