
Daily rhythm of glucose-induced insulin secretion by isolated islets
from intact and pinealectomized rat

Introduction

The pineal gland links the cyclic environment and the

rhythmic vertebrate organism through the synthesis and
release of melatonin [1]. The circadian release of noradren-
aline by the sympathetic terminals of the superior cervical

ganglia, acting on b1- and a1-adrenoceptors, leads to the
synthesis and activation of the rate-limiting enzyme aryl-
alkylamine serotonin-N-acetyltransferase, resulting in the

circadian production of melatonin [2].
The functional characteristics of the neuroendocrine

system that controls the pineal gland causes the circadian
production and secretion of melatonin to be tightly

related to the dark phase of the diurnal environmental
light–dark cycle. In this way, the plasma concentration
curve for melatonin, by following the profile of environ-

mental darkness, is able to send signals to daily and
seasonal timing events of the internal milieu [3]. This
internal synchronizer role has been already demonstrated

for a very wide range of actions of melatonin in the
regulation and modulation of several physiological sys-
tems [4–9].

Glycemia and insulinemia have a remarkable diurnal
rhythm [10–12]. Although blood glucose level is correlated

with feeding schedule, a diurnal variation of this parameter
has been clearly demonstrated in fasted animals. Bizot-
Espiard et al. [13] showed a clear diurnal variation in
plasma insulin levels in fasted rats kept on a 14:10 hr light–

dark cycle. Furthermore, it is well known that both humans
[14, 15] and rats [8, 16–18] show a diurnal fluctuation in the
oral and intravenous glucose tolerance test and in insulin

peripheral sensitivity. These data suggest that the well-
known physiological relationship between blood glucose
concentration and insulin secretion is not enough to explain

the diurnal oscillation of these variables.
Both humans [19] and rodents present a relationship

between pineal gland, melatonin and the regulation of

carbohydrate metabolism [8, 12, 20, 21]. Pinealectomy
induces diminished glucose tolerance, insulin resistance,
decreased hepatic and muscular glycogenesis and an
increase in blood pyruvate concentration in rats [22–24].

In addition, pinealectomy also induces a decrease in insulin
response and a fall in GLUT4 content in adipose and
muscle tissues of rats [8]. Also, it has been shown that

melatonin suppresses insulin secretion in several experi-
mental conditions [12, 25–30]. However, the action of
melatonin in the process of glucose-induced insulin secre-

tion is not well understood.
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In order to contribute to the understanding of this
subject, the aim of the present investigation was to study
the daily rhythm of glucose-induced insulin secretion and

glucose oxidation by isolated pancreatic islets and to
examine the effect of chronic absence of melatonin (30 days
of pinealectomy) on this rhythmic process.

Materials and methods

Animals

Male albino rats weighting 150–200 g (45–60 days old)
were obtained from the Institute of Biomedical Sciences,

USP, São Paulo. Control rats (Control group) were kept in
groups of five at 23�C in a room with a light–dark cycle of
12:12 hr (lights on 7:00 hr) for 30 days with food and water
ad libitum. Another group of animals was pinealectomized

and kept under the same environmental conditions for
30 days (PINX group). After this period animals were
killed by decapitation for islet isolation at several time

points along a 24-hr period: 00:00, 03.00, 08.00 and
16.00 hr (respectively, 5 and 8 hr after lights off, and 1
and 9 hr after lights on).

Chemicals

Collagenase type V and bovine albumin-fraction V were
purchased from Sigma Chemical Co., St. Louis, MO, USA,
[U-14C]-Glucose and 125I-insulin were obtained from
Dupont/NEN. Rat insulin standards and antibody were a

gift from Dr Leclercq-Mayer, Université Libre de Bruxelles,
Belgium.

Pinealectomy

The animals were anesthetized with pentobarbital (45 mg/kg

b.w.) and subjected to surgery according to the method of
Hoffman and Reiter [31]. Briefly, the anesthetized animal
was placed in a stereotaxic apparatus for small animals and a
sagittal openingwasmade on the scalp. The skin andmuscles

were pushed aside in order to expose the lambda suture. By
means of a circular drill, a disc-shaped perforation was made
around the lambda and the disc-shaped piece of bone

was delicately removed. Thereafter, the pineal gland (which
is located just below the posterior venous sinus confluence)
was removed with a fine forceps. After a brief period of

hemostasis, the skull was closed by returning the disc-shaped
bone and the scalp was sutured with cotton thread.

Insulin secretion during incubation of islets

Rats were killed at 03:00, 08:00, 16:00 and 24:00 hr
and pancreatic islets isolated as described by Lacy and

Kostianovsky [32]. Incubations of five islets were carried
out at 37�C for 60 min in 0.5 mL of Krebs–Henseleit buffer
(139 mm Na+, 5 mm K+, 1 mm Ca2+, 1 mm Mg2+,

124 mm Cl–, 24 mm HCO3
–) and 0.2% albumin in the

absence and presence of glucose (5.6 or 8.3 mm), equili-
brated in a mixture of O2 (95%) and CO2 (5%). At the end

of the experiment, the medium was collected for insulin
assay.

Determination of [U-14C]-glucose oxidation

Groups of 20 islets from control or pinealectomized rats

were incubated in glass tubes containing 100 lL of Krebs–
Henseleit solution, 5.6 or 8.3 mm glucose and [U-14C]-
glucose 20 lCi/mL (New England Nuclear Co, USA),
equilibrated against a mixture of O2 (95%) and CO2 (5%).

The tubes were transferred to counting vials that were
carefully closed with a rubber stopper and incubated for
120 min in a shaker bath at 37�C. After this period, 0.1 mL

of HCl (0.5 N) was injected with a syringe into the tubes
containing the islets to stop the reaction, without loss of the
gas produced during the experiment. The 14CO2 produced

was exposed for 2 hr to hyamine injected outside the tube
containing the islets, in the same manner as for HCl.
Scintillation liquid was added and radioactivity of the
present 14CO2 adsorbed to hyamine was counted.

Statistical analysis

The data, expressed as mean ± S.E.M., were analysed by
two-way analysis of variance for the factors �time of the day�
(hour of the sacrifice) and �treatment� (control and pinealec-

tomized groups) followed by the Bonferroni post-test
(GraphPad Prism version 3.00 for Windows, GraphPad
Software, San Diego, CA, USA). If the temporal series

showed significance for the �time of the day� factor, a second
mathematical and statistical procedure was applied in order
to see if the time series might be represented by a cosine curve
(Cosinor method) [33–35]. The fitting of the theoretical

cosine curve to the real time series was done using the least-
squares procedure. It was possible to estimate the fitting
using the F statistics [36]. The null hypothesis tested was of

zero amplitude, i.e. no rhythmicity at the assumed frequency
(24 hr). In addition, three parameters of the adjusted curve
were calculated: acrophase (time of the maximum value of

the adjusted curve), mesor (value of the mean level of the
adjusted curve) and amplitude (distance between the mesor
and the maximum or minimum value of the adjusted curve).
These parameters were compared between the experimental

groups using Student’s t-test [36].

Results

Two-way analysis of variance showed that the in vitro insulin
secretion induced by 5.6 mm glucose was significantly

influenced by the two factors considered (hour of the day
and pinealectomy, P < 0.0001 and P ¼ 0.0127, respec-
tively). The Bonferroni post-test showed that insulin secre-

tion differed between control and pinealectomized rats at
08:00 and 16:00 hr (P < 0.05 and P < 0.01, respectively)
(Fig. 1). Cosinor analysis (Table 1) showed a 24-hr rhythm
of insulin secretion induced by 5.6 mm glucose for both the

control and PINX groups. Pinealectomy increased themesor
and reduced the amplitude of the daily oscillation of insulin
secretion induced by 5.6 mm glucose. The acrophase

occurred approximately at 22:00 hr for both the control
and the pinealectomized group (5 hr after lights off ).

Two-way analysis of variance showed that the in vitro

insulin secretion induced by 8.3 mm glucose was also
significantly influenced by the factors �hour of the day�
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and pinealectomy (P < 0.0001 for each factor). The
Bonferroni post-test again showed that the two groups
had significantly different secretion values at 08:00 and
16:00 hr (P < 0.001) (Fig. 1). Cosinor analysis (Table 1)

showed a 24-hr rhythm of insulin secretion by isolated
pancreatic islets induced by 8.3 mm glucose for both the
control and PINX groups (P ¼ 0.03 and P ¼ 0.005,

respectively). Moreover, pinealectomy induced a significant
phase-advance of the daily curve of insulin secretion, and
an elevation of the mesor without changing the amplitude

of the curve.
The statistical analysis of the process of glucose oxida-

tion induced by 5.6 mm glucose also depends on the two
factors: hour of the day when the animal is sacrificed

(P < 0.0001) and pinealectomy (P < 0.0001). The post-
test showed that the two groups differed at 16:00 hr
(P < 0.01) (Fig. 2). Cosinor analysis showed a 24-hr

rhythm of glucose oxidation in pancreatic islets isolated
from control (P ¼ 0.01) or pinealectomized (P ¼ 0.009)
rats. The rhythmic analysis also showed that pinealectomy

induced a mesor elevation without changing either ampli-
tude or acrophase of the daily curve (Table 1).

Fig. 1. Daily profile of glucose-stimulated insulin secretion by
pancreatic Langerhans islets isolated from rats sacrificed at differ-
ent times during the 12:12 hr light–dark cycle (indicated by the
black and white bar above the x-axis). The experiments were done
using two different concentrations of glucose: 5.6 and 8.3 mm. It
should be noticed that in some data points the error bar is small
enough to be included in the symbol. Two-way ANOVA showed a
significant effect of time of sacrifice and of pinealectomy (PINX).
*Significant difference between the values obtained for the Control
and PINX groups at each of the indicated time points (Bonferroni
post-test).
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Two-way ANOVA showed that the daily glucose oxida-
tion by isolated pancreatic islets induced by 8.3 mm glucose
was significantly influenced by the hour of sacrifice
(P < 0.0001) and by pinealectomy (P < 0.0001). The

Bonferroni post-test showed that the two groups of animals
differed at 03:00, 08:00 and 16:00 hr (P < 0.001 for each
time point) (Fig. 2). Cosinor analysis showed a significant

24-hr rhythm of oxidation in both groups (P ¼ 0.02 for
control and P ¼ 0.03 for pinealectomized rats). In addition,
in the presence of 8.3 mm glucose, pinealectomy induced a

phase-advance of the process of oxidation, and an increase
of the mesor without changing the amplitude of the
adjusted curve (Table 1).

Discussion

Studies conducted on normal rats have shown a circadian

rhythm of plasma insulin concentration and an increase of
the hormone release at the beginning of the night coinci-
dentally with the onset of the circadian phase of activity

and food intake [10, 12, 29, 30, 37]. The circadian
oscillation of insulin is associated with an improvement in
glucose tolerance, a rise in insulin sensitivity and B-cell

responsiveness, and secretion of counter-regulatory hor-
mones [11, 12, 21, 38–40]. Lima et al. [8] demonstrated that
30 days after surgery pinealectomized rats developed glu-

cose intolerance, decreased adipose cell responsiveness to
insulin, reduced GLUT4 content in muscle and adipose
tissue, as well as a modification in the daily rhythm of

in vivo insulin secretion induced by glucose overload.
The present data confirmed the existence of a strong

24-hr rhythm of insulin secretion by isolated pancreatic
islets as previously demonstrated [12, 40]. In addition, it

was documented that the glucose-metabolizing ability of
the B-cell follows a daily rhythm phase locked to the insulin
secretion rhythm.

Most interesting, however, was the demonstration that
the daily rhythmic processes of insulin secretion and B-cell
[U-14C]-glucose oxidation by isolated pancreatic islets is

completely modified by the chronic absence of the pineal
gland. In this way, 30-days pinealectomy induced in all
groups an increase in mean 24-hr glucose-stimulated insulin
secretion and [U-14C]-glucose oxidation, provoking some

alterations in the rhythmic amplitude and a remarkable
phase-advancing of the daily curves for 8.3 mm glucose, a
condition similar to that observed in fed animals and where

the B-cells are supposedly more active. As the main
differences between control and pinealectomized animals
are concentrated in time points sampled during the lights

on period, it is possible to conclude that the absence of the
pineal gland eliminates the clear daily fluctuation of
production of insulin and metabolization of glucose by

pancreatic B-cells.
These observations strongly suggest that the presence of

the pineal gland is necessary for keeping the acrophase of
the pancreatic rhythms of these B-cells during the first half

of the dark period, thus contributing to the synchronization
of these metabolic rhythms with other circadian rhythms
like activity-rest and feeding.

It should be noticed, in addition, that the physiological
processes of insulin secretion and glucose oxidation were in
phase with each other in both control and PINX rats

(although both processes were phase-advanced in PINX
compared with control animals). This relationship between
the variation rate of glucose-induced insulin secretion and

the B-cell glucose metabolism would be expected, consid-
ering the importance of sugar metabolism in the process of
insulin secretion.

One point that deserves discussion is how the pineal

gland controls several rhythmic processes involved in
carbohydrate metabolism. In spite of the existence of data
in the literature showing that some other putative pineal

secretory products might influence glucose metabolism [28,
41], melatonin is, by far, the best candidate as the main
pineal secretory product regulating carbohydrate metabo-

lism [26–28, 41–46].
There are solid grounds to postulate that melatonin may

act peripherally by regulating insulin secretion [28, 44] and
insulin action on sensitive tissues [8, 42], by influencing

glucagon secretion and action [23, 47], and by acting on
hepatocytes regulating glucose metabolism and secretion
[46]. In addition, some of these peripheral actions of

melatonin were shown to influence directly rhythmic
processes of insulin secretion [12] or action [8].

Taking into account these data, it is possible to propose

that melatonin acts on the regulation of insulin secretion
both as an internal synchronizer [in this case synchronizing

Fig. 2. Daily profile of glucose-stimulated B-cell glucose oxidation
in islets isolated from rats sacrificed at different times during the
12:12 hr light–dark cycle (indicated by the black and white bar
above the x-axis). The experiments were done using two different
concentrations of glucose: 5.6 and 8.3 mm. It should be noticed
that in some data points the error bar is small enough to be
included in the symbol. Two-way ANOVA showed a significant
effect of time of sacrifice and of pinealectomy (PINX). *Significant
difference between the values obtained for the Control and PINX
groups at each of the indicated time points (Bonferroni post-test).
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the pancreatic peripheral oscillators [12]] and as a masking
agent, directly regulating the ability of B-cells to produce
and release insulin [44, 50]. On the other hand, melatonin

might, alternatively or concomitantly, modulate the neuro-
endocrine system that participates in the complex control of
carbohydrate metabolism acting either centrally [39, 43] or
peripherally [48, 49].

In summary, our findings emphasize the important
role played by the pineal gland in the control of circadi-
an rhythms involved in the regulation of glucose homeo-

stasis.
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