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Abstract

We investigated the effects of pinealectomy on adipose tissue
metabolism at different times of day. Adult male Wistar rats
were divided into two groups: pinealectomized and control
(sham-operated). Eight weeks after surgery, the animals were
killed at three different times (at 8.00 a.m., at 4.00 p.m. and
11.00 p.m.). We collected blood samples for glucose, insulin, cor-
ticosterone, and leptin determinations, and periepididymal adi-
pocytes for in vitro insulin-stimulated glucose uptake, oxidation,
and incorporation into lipids. Pinealectomy caused insulin resist-
ance as measured by 2-deoxyglucose uptake (a fall of ~40% in
the maximally insulin-stimulated rates) accompanied by hyper-
corticosteronemia at the three time points investigated without

changes in plasma insulin an or leptin levels. Furthermore, pine-
alectomy increased the insulin-induced glucose incorporation
into lipids (77 %) at 4.00 p.m. and insulin-induced glucose oxida-
tion in the morning and in the afternoon, while higher rates were
observed in the evening and in the morning in control rats. In
conclusion, cell responsiveness to insulin was differentially af-
fected by pineal ablation and time of day, and persistent insulin
resistance was obtained in pinealectomized rats. We hypothesize
that pinealectomy exposes the animal to an inadequate match
between energy requirements and fuel mobilization.
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Introduction

A diurnal variation in blood glucose level has been clearly dem-
onstrated in mammals. Plasma concentrations of glucose and in-
sulin in rats are higher during the dark than during the light peri-
od [1]. Counterregulatory hormones such as corticosterone pre-
sent a circadian variation whereby concentrations are lowest in
rats just before lights are turned on and at their peak just before
lights are turned off [2].

The pineal gland synthesizes and releases melatonin into the cir-
culation almost entirely during the night period in vertebrates
[3,4]. Since the profile of melatonin in plasma accompanies that
of the environmental darkness, it is able to signal daily and sea-
sonal timing events to the internal milieu [5]. This internal syn-

chronization role of melatonin has been shown to be crucial for
the wide range of physiological systems that exhibit diurnal
rhythmicity [4-7], such as glucose tolerance and insulin sensi-
tivity [8-11].

Pinealectomy reduces glucose tolerance, induces insulin resist-
ance, decreases hepatic and muscular glycogenesis, and increas-
es the blood pyruvate concentrations in rats [11-13]. These ef-
fects on metabolism can partly be explained by changes in insu-
lin secretion and/or changes in peripheral insulin sensitivity. In
addition, melatonin’s direct inhibition of adrenal ACTH-induced
cortisol release [14] and glucose-induced insulin secretion in
pancreatic islets [9], enhancing adipocyte sensitivity to insulin
after 4 h in vitro treatment [15], have been demonstrated. In ad-
dition, we have already demonstrated that pinealectomy in-
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duced a reduction in insulin-stimulated glucose uptake by pro-
moting a fall in adipocyte GLUT-4 content [8]. However, there is
little information on the role of melatonin in the metabolism of
adipose tissue throughout the day.

For a better understanding of this subject, the present investiga-
tion aimed to analyze the effects of pinealectomy on glucose up-
take, glucose oxidation, lipogenesis and insulin receptor binding
at distinct time points of the light-dark cycle (8.00 a.m., 4.00 p.m.
and 11.00 p.m.). Plasma levels of leptin, corticosterone, insulin,
and glucose were assessed in parallel.

Materials and Methods

Animals

Six-week-old male adult Wistar rats from the Institute of Bio-
medical Sciences Animal Resource of the University of Sao Paulo
weighing 100 to 135 g were initially anesthetized with sodium
pentobarbital (Hypnol®, 4.0 mg/100 g body wt. ip.) and subjected
to pinealectomy or to sham operation (PINX and CONTROL
groups, respectively). Since preliminary studies from our labora-
tory did not show any differences between the data obtained for
sham-operated or for intact animals (data not shown) in the fol-
lowing sections, the sham-operated group was designated as the
CONTROL group. After recovery from surgery (according to pro-
cedures described elsewhere [16]), the rats were housed in cages
(3-4 animals per cage) with food (Nuvital® balanced chow pel-
lets) and water ad libitum in a temperature-controlled room
(25°C) under a 12/12 h light-dark cycle (lights on at 7.00 a.m.).
Body weight as well as food and water consumption were meas-
ured weekly. Eight weeks post-surgery, the animals (CONTROL
and PINX) were killed by decapitation at 8.00 a.m. and 4.00 p.m.
(under white light) and at 11.00 p.m. (under red light), respec-
tively, 1 h after lights on, 3 h before lights off and 4 h after lights
off once the pinealectomy was verified as complete. Blood sam-
ples were collected into heparinized tubes for determinations of
plasma insulin, leptin, corticosterone, and glucose. We opened
the abdominal wall, excised the periepididymal fat pads, and
processed them for adipocyte isolation and metabolic studies -
insulin-stimulated 2-deoxy-D-[3H]glucose uptake, incorporation
of D-[U-1%C]-glucose into lipids and conversion of D-[U-14C]-glu-
cose to '“CO,, and insulin binding. All procedures followed a pro-
tocol approved by the Institute of Biomedical Sciences Ethics
Committee for Animal Research (CEEA) (No. 032/99).

Adipocyte isolation

Epididymal fat pads were minced with fine scissors and added to
a flask containing 4.0 ml of EHB buffer (Earle’s salts-25 mM
HEPES-4% BSA), 5 mM glucose and 1.25 mg/ml collagenase type
I, pH 7.4 at 37°C [17]. The mixture was incubated for 30 min at
37°C in an orbital shaker (New Brunswick Scientific, Edison, NJ)
at 150 rpm. The isolated adipocytes were filtered through a fine
plastic mesh, washed three times with 25.0 ml EHB (Earle’s salts,
20mM HEPES, 1% BSA, no glucose, 2mM Na pyruvate, and
4.8 mM NaHCOs), pH 7.4, at 37°C, and resuspended to a final
cell concentration of 20% (vol/vol, corresponding to a 7-9 x 10°
cells/ml). This cell suspension was maintained in a water bath
for 30 min before initiating the biological tests. Adipocyte viabil-
ity was tested using Trypan blue, and cell number was deter-

mined as previously described. Briefly, we measured the isolated
adipocytes’ (100 cells) diameters under a light microscope
equipped with an ocular micrometer. Assuming that the isolated
adipocyte is spherical, the mean volume and surface area were
determined according to the method by Di Girolamo et al. [18].

Insulin-stimulated 2-deoxy-D-[3H]glucose uptake (2DGU)
Isolated adipocytes (a 20% cell suspension in EHB buffer) were
incubated in the presence or absence of a maximally stimulating
insulin concentration (10 nM). At the end of the incubation peri-
od (30 min), the basal and maximal rates of 2DGU were deter-
mined according to protocols described elsewhere [19].

Insulin binding to receptors

From the same 20% adipocyte suspension, 450 ul aliquots in EHB,
pH 7.8, were transferred to a 12 x 75 mm polypropylene test tube
prepared with a 10 ul mixture of A;,-monoiodo-12?>I-labeled insu-
lin (10000 counts/min/tube, Amersham International) in the
presence or absence of “cold” insulin (0 and 1uM) in a 500 ul
final reaction volume. This mixture was incubated for 180 min
in a water bath at 16 °C. The assay was stopped by the centrifuga-
tion of 200 ul aliquots through silicone oil, and the radioactivity
trapped in the cell pellets was measured as described elsewhere
[19]. Specific insulin binding was determined; this is reported as
percent total insulin bound per 10° cells.

Incorporation of D-[U-14C]-glucose into lipids and
conversion of D-[U-4C]-glucose to *CO,

A 450 ul aliquot from a 20% adipocyte suspension in Krebs/Ring-
er/Phosphate buffer with 1% BSA and 2 mM glucose, pH 7.4, at
37°C and saturated with a gas mixture of CO, 5%/0, 95% was pi-
petted into polypropylene test tubes (17 x 100 mm) previously
containing D-[U-'#C]-glucose (0.1 uCi/tube) in the presence or
absence of insulin (10 nM), and incubated (500 pl - final volume)
for 1 h at 37°Cin an orbital shaking water bath (New Brunswick)
(150 rpm). The tubes had an upper isolated well containing a
loosely folded piece of filter paper moistened with 0.2 ml of etha-
nolamine. After incubation, the medium was acidified with
0.2 ml of H,SO,4 (8N) and the tubes were incubated for a further
30 min period. At the end of incubation, the filter paper was re-
moved and plunged into scintillation vials for the measurement
of adsorbed radioactivity and the remaining reaction mixture
was treated with 2.5 ml Dole’s reagent (isopropanol: n-heptane:
H,S0,, 4:1:0.25, v/v/v) for lipid extraction [17]. The results are
expressed as nmol glucose incorporated into lipids/(10° cells/h).

Plasma hormones and glucose measurements

Plasma glucose was determined by the enzymatic glucose-oxi-
dase/peroxidase method [20] using a commercial kit (Glicose
SL-e, CELM, Sao Paulo, Brazil). Plasma leptin and insulin levels
were quantified using rat leptin and insulin radioimmunoassay
(RIA) kits from Linco Research, Inc. (St. Charles, MO). Total corti-
costerone was also quantified using a commercial RIA kit from
Amersham Biosciences (Biotrak Rat Corticosterone, Bucking-
hamshire, England).

Statistical analysis

Data were analyzed statistically by two-way ANOVA followed by
Bonferroni post-tests for multiple comparisons among groups,
and p-values less than 0.05 were considered statistically signifi-
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cant. Data are presented as the mean + SEM. The statistical soft-
ware package used was the GraphPad PRISM version 3.1 from
GraphPad Software Inc.

Results

Growth profiles of PINX and CONTROL rats

Body weights (101 £4 g and 102 +5 g at surgery and 274 +5 and
270+ 4 g at sacrifice for PINX and CONTROL animals, respective-
ly, n=12, p>0.05) were similar. No significant differences were
detected in mean daily food intake (PINX=21.7+0.6 g vs. CON-
TROL=21.9+0.5 g per rat, n=12, p>0.05) or water consumption
(PINX=36.8+1.1 ml vs. CONTROL=36.2+0.9 ml per rat, n=12,
p>0.05) or in mean adipocyte size (239+21 and 223 £ 21 pl of
cell volume for PINX and CONTROL, respectively, n=12, p > 0.05).

Insulin-stimulated 2DGU and insulin binding studies

Fig.1a shows the effect of pinealectomy on 2DGU. The adipo-
cytes of PINX animals showed a fall in maximally insulin-stimu-
lated 2DGU (around 40%, p <0.0001) at the three time points in-
vestigated compared to CONTROL. The increase in basal 2DGU
observed in CONTROL at 11.00 p.m. (p=0.001) was abolished by
pinealectomy. The difference between maximal and basal
(Amx-ps) 2DGU rates was significantly reduced in PINX at all times
investigated (p=0.001). However, a decrease in Ayx.gs Was de-
tected in both groups during the dark period. Although there
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was no significant difference in total insulin binding to the adi-
pocytes (p > 0.5) between the two groups at any time, an increase
in this parameter was seen in CONTROL at 11.00 p.m. (p=0.003),
but not in PINX animals (Fig.1b).

Conversion of D-[U-4C]-glucose to “CO, and incorporation
of D-[U-14C]-glucose into lipids

As observed in Fig.2a, CONTROL animals showed the highest
level of basal and maximally insulin-induced glucose oxidation
at 8.00 a.m. followed by a decrement (63%, p=0.0001) at 4.00
p.m. and a later recovery at 11.00 p.m. Conversely, PINX rats
showed the highest oxidative rates at 8.00 a.m., followed by a
progressive decline (55%, p=0.002), reaching the lowest level at
11.00 p.m. PINX rats presented a higher A gs of glucose oxida-
tion during the light hours, whereas this increase occurred dur-
ing the dark period in CONTROL. In addition, at 8.00 a.m. and
4.00 p.m., both the maximally insulin-stimulated and Ayy_ps re-
sponses were higher in PINX than in CONTROL animals (p < 0.05).

Fig. 2b shows both basal and maximal rates of insulin-stimulat-
ed glucose incorporation into lipids. There was no variation in
this parameter in the CONTROL animals throughout the day. In
PINX, a 77 % higher rate of maximally insulin-induced glucose in-
corporation into lipids and a 113 % higher Ayx_gs response than in
CONTROL (p=0.0001) were observed at 4.00 p.m. No differences
in the basal rates were detected between the two groups.

Fig.1 Influence of pinealectomy and time
EES of day on (a) [?H]-2-deoxy-D-glucose uptake
Emx and (b) binding of insulin to its receptors in

isolated adipocytes. The differences be-
tween maximal (MX) and basal (BS) rates
(corresponding to the area limited by the
maximal and basal bars) illustrate the re-
sponsiveness to insulin and are represented
by the brackets on the right side of the bars.
Values are mean + SEM, n=7. (*) p<0.05,
PINX vs. CONTROL at the same time point;
(#) p<0.05, 11.00 p.m. vs. 8.00 a.m. within
the same group.
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Plasma hormones and glucose measurements

Plasma glucose levels (Fig. 3a) were not significantly altered by
pinealectomy; however, an increase was observed at 11.00 p.m.
(p<0.05) in both experimental groups. Similar results were ob-
tained for plasma insulin and leptin levels (Fig.3b and Fig.3c,
respectively). Fig.3d shows that both groups presented an in-
crease (p <0.05) in corticosterone levels at 4.00 p.m. in compari-
son to the preceding time (8.00 a.m.). The glucocorticoid levels
were higher (+2 fold, p<0.05) in PINX than in CONTROL at any
time investigated.

Discussion

Even though in vitro melatonin treatment has been previously
demonstrated to inhibit lipolysis and complete glucose oxidation
and its incorporation into lipids in adipose tissue of rodents [21 -
23], these studies have not investigated the effects of pinealec-
tomy on such metabolic parameters or on their modulation over
the day. Thus, this is the first study that correlated adipose tissue
metabolism at different times of day with the absence of the
pineal gland.

Pinealectomy promoted an impressive 2-fold increase in plasma
corticosterone levels at all times investigated. Classical studies
have shown that melatonin and pinealectomy have a modulatory
effect on rat adrenal glands [11,24,25]. In addition, a recent study

Fig.2 Influence of pinealectomy and time
of day on (a) CO, production from [U-'4C]
glucose and (b) on [U-C] glucose incor-
poration into lipids in isolated adipocytes.
Values are mean + SEM, n=7. (*) p<0.05,
PINX vs. CONTROL at the same time point;
(#) p<0.05, 11.00 p.m. vs. 8.00 a.m. within
the same group; (&) p<0.05, 4.00 p.m. vs.
8.00 a.m. and 11.00 p.m. within the same

group.

400PM  11:00 PM

*&

4:00 PM

11:00 PM

demonstrated the presence of melatonin receptors in primate
adrenals, which inhibited ACTH-stimulated cortisol production
[14]. These data agree with the hypercorticosteronemia observed
in our PINX rats.

Assuming that there was a daily variation in insulin receptor
number in CONTROL animals and that pinealectomy disrupted
it, and considering that pinealectomized rats develop insulin re-
sistance [8], it is possible that this disturbance somehow con-
tributed to the development of resistance in PINX rats. However,
since there was no difference in the absolute amount of receptors
between the groups, it is evident that post-receptor defects were
triggered by pinealectomy and worked to evoke insulin resist-
ance. Some experimental observations have shown that melato-
nin potentiates several points of the insulin-transduction path-
way in an action mediated by membrane receptors [26]. Thus,
the absence of melatonin due to pinealectomy might have re-
duced the intensity of insulin intracellular signaling contributing
to the observed insulin resistance.

In addition, our data showed that pinealectomy caused a persist-
ent increase in glucocorticoid levels, apparently without disturb-
ing its putative daily variation. Hypercorticism elicits insulin re-
sistance, impairs GLUT4 translocation to the plasma membrane,
and reduces the transporter content in adipocytes [27,28]. On
the other hand, the lack of melatonin leads to similar results as
we have shown here and elsewhere [8]. Therefore, we propose
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Fig.3 Plasma glucose (a), insulin (b), leptin
(c) and corticosterone (d) levels at different
times of day for CONTROL and PINX rats.
Two groups of animals were decapitated
and blood was collected for determination
of plasma glucose and hormone levels. Bars
represent the mean+SEM, n=7. (%)
p<0.05, PINX vs. CONTROL at the same
time point (#) p<0.05, 11.00 p.m. vs. 8.00
a.m. within the same group; (@) p<0.05,
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that insulin resistance is a post-insulin receptor defect and both
hypercorticism and lack of melatonin concur to produce the de-
fect. Note, however, that this defect involves almost exclusively
the glucose transport system since other actions of insulin (the
stimulation of glucose oxidation and its incorporation into li-
pids) were not similarly regulated. This is the first time that the
pineal gland has been shown to influence differential regulation
of the pleiotropic actions of insulin in vivo.

We observed an important time-of-day-dependent oscillation in
adipocyte ability to oxidize glucose in CONTROL rats, with higher
values during the evening and morning and lower rates in the
afternoon; this indicated that this metabolic activity was higher
during the period of more intense energy expenditure. Converse-
ly, PINX rats presented a higher Ay gs for glucose oxidation dur-
ing the morning and afternoon, but not in the evening, which
does not appear to match the animal metabolic needs since the
rats are less active at these times of day. This effect is essentially
similar to that observed by Picinato et al. [10], who showed that
pinealectomized rats lose the ability to synchronize the glucose-
stimulated insulin secretion during the dark period of the day.
These two results show that pinealectomy generates a patho-
physiological state that makes the animal metabolically unfit to
deal with the daily period of activity. A recent review [29] em-
phasized that the nervous system and the adipose tissue had
complex and reciprocal interactions. Here, we have shown that
the pineal gland participates in and modulates such interactions.

Regarding the insulin-stimulated glucose incorporation into li-
pids, our data show an expressive increase in maximal respon-
siveness to insulin at 4.00 p.m. in PINX, a phenomenon not de-
tected in CONTROL rats at any of the times investigated. An in-
crease in adiposity with aging has been reported to occur [30-
32], that is, opposite to the aging-associated decline in plasma
melatonin concentrations [33,34]. We did not observe any sig-
nificant increase in body weight since we monitored the body
weight for only 8 weeks after surgery and in young animals.
However, this particular increase in lipogenesis could explain fu-

4:00 PM 11:00 PM
Hours

ture increases in adiposity such as those observed in middle-
aged rats and the prevention of visceral fat accumulation by mel-
atonin treatment as reported by Rasmussen et al. [35,36] and
Wolden-Hanson et al. [37].

Leptin, one of the main hormonal products of adipocytes, is
strictly related to body mass [38 —41] and its release is potential-
ly stimulated by glucocorticoids [42-45]. In the present study,
higher increases in corticosterone levels detected in PINX were
not accompanied by increased leptinemia. These results suggest
that the pineal gland might play a crucial role in corticosterone-
induced leptin secretion. On this basis, a direct action of melato-
nin should be considered since MT1 and MT2 functional recep-
tors have been described in human and rat adipocytes [21,46].

In conclusion, our study emphasizes the crucial role of the pineal
gland in the peripheral action of insulin by focusing on the me-
tabolism of adipose tissue. Pinealectomy caused persistent insu-
lin resistance, as measured by 2DG uptake. Taken together with
the effects on glucose incorporation into lipids and oxidation,
pineal ablation exposes the animal to an inadequate match be-
tween the energy requirements and fuel mobilization probably
generated by the loss of the internal synchronization between
metabolic rhythms and the daily activity-rest cycle. The lack of
melatonin together with the upward displacement of the hypo-
thalamus-pituitary-adrenal set point may be the main causative
factors underling the mentioned changes.
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