Class 12

Genetic Code

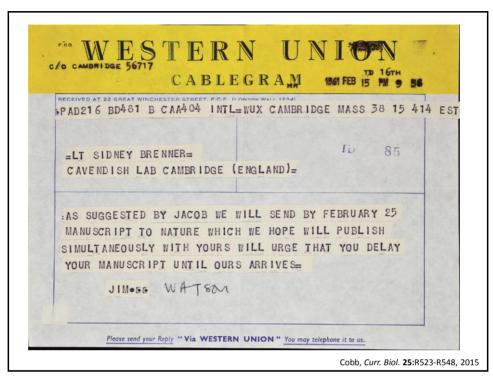
Marshall Nirenberg & Heinrich Matthaei - 1961

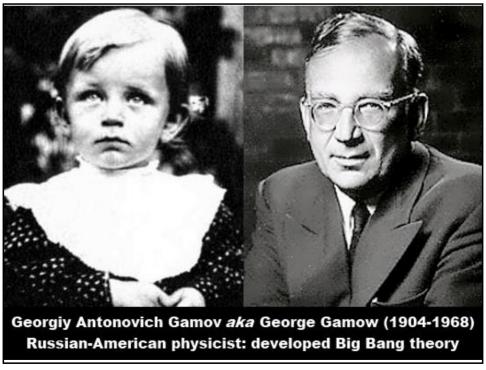
1

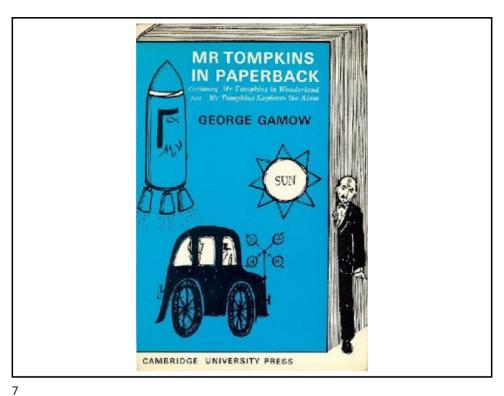
Main characters involved in the history (approx. in order of appearance)

	Nome	Born-Deceas.	Age in	NPW/
	Nome	born-beceas.	1961	area
1	Marshall Nirenberg	1927-2010	34	1968-Med.
2	J. Heinrich Matthaei	1929-	32	
3	Francis Harry Compton Crick	1916-2004	45	1962-Med.
4	James Dewey Watson	1928-	33	1962-Med.
5	George Gamow	1904-1968	57	
6	Har Gobind Khorana	1922-2011	39	1968-Med.
7	Otto Loewi	1873-1961	88	1936-Med.
8	Marianne Grunberg-Manago	1921-2013	40	
9	Christian de Duve	1917-2013	54	1974-Med.
10	Otto Warburg	1883-1970	78	1931-Med.
11	Philip Siekevitz	1918-2009	43	
12	Paul Zamecnik	1912-2009	49	
13	Mahlon Hoagland	1921-2009	40	

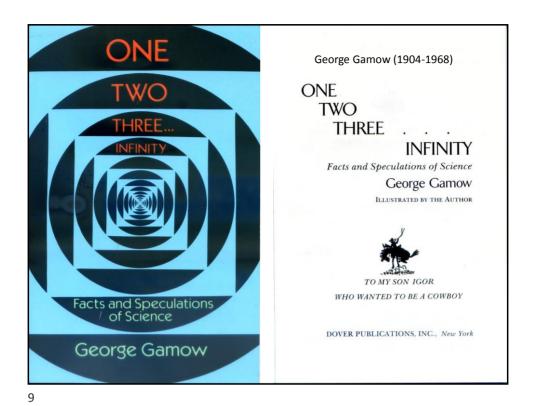
BACKGROUND

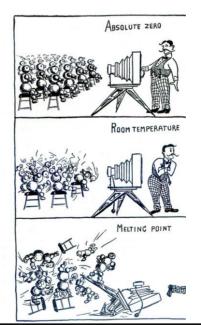

First Ideas about the code

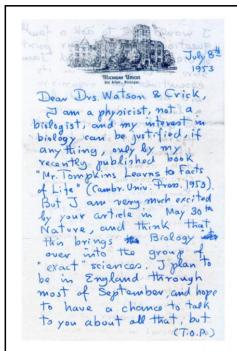

3

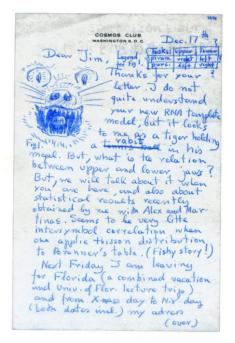

In the comparative isolation of Cambridge I must confess that there are times when I have no stomach for decoding.

Francis Crick Early 1955


Sydney Brenner coined the term "codon" - the trinucleotide unit that specifies one amino acid.

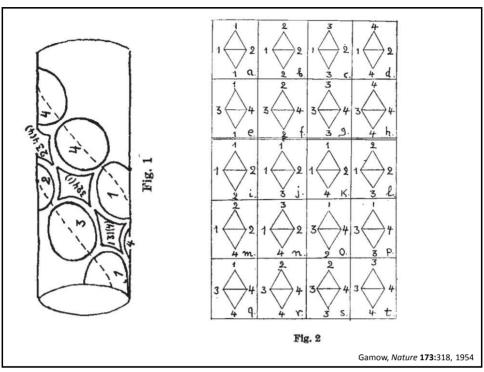






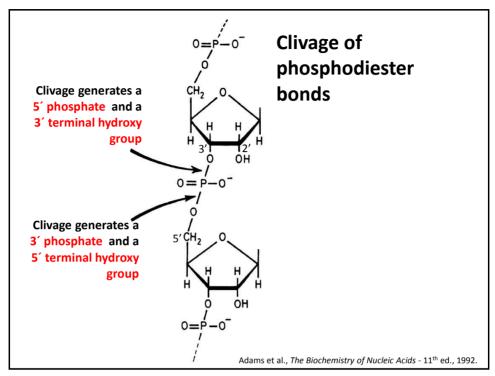
One of the 128 drawings that illustrate the book "1, 2, 3... infinity", by G. Gamow

Watson (2001), Genes, Girls and Gamow – after de double helix. Knopf, NY – 259pp.

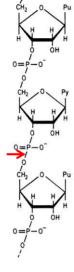

11

Hypothesis of George Gamow for the coding of proteins in DNA

Possible Relation between Deoxyribonucleic Acid and Protein Structures


In a communication in *Nature* of May 30, p. 964, J. D. Watson and F. H. C. Crick showed that the molecule of deoxyribonucleic acid, which can be considered as a chromosome fibre, consists of two parallel chains formed by only four different kinds of nucleotides. These are either (1) adenine, or (2) thymine, or (3) guanine, or (4) cytosine with sugar and phosphate molecules attached to them. Thus the hereditary properties of any given organism could be characterized by a long number written in a four-digital system. On the other hand, the enzymes (proteins), the composition of which must be completely determined by the deoxyribonucleic acid

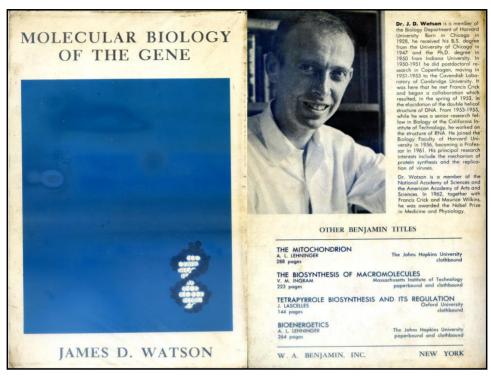
Gamow, Nature 173:318, 1954



BACKGROUND

A pinch of chemistry

Action of pancreatic RNase on RNA



Adams et al., The Biochemistry of Nucleic Acids - 11th ed., 1992.

17

BACKGROUND

The code in 1965

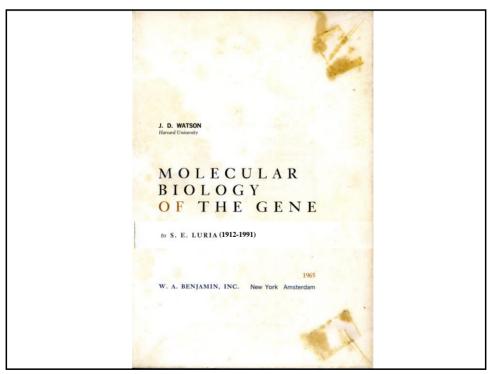


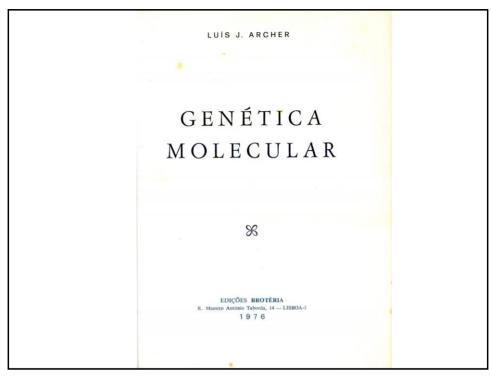
TABLE 13-1 The 64 possible three-letter codons

AAA	AAG	AAC	AAU	
AGA	AGG	AGC	AGU	
ACA	ACG	ACC	ACU	
AUA	AUG	AUC	AUU	
GAA	GAG	GAC	GAU	
GGA	GGG	GGC	GGU	
GCA	GCG	GCC	GCU	
GUA	GUG	GUC	GUU	
CAA	CAG	CAC	CAU	
CGA	CGG	CGC	CGU	
CCA	CCG	CCC	CCU	
CUA	CUG	CUC	CUU	
UAA	UAG	UAC	UAU	
UGA	UGG	UGC	UGU	
UCA	UCG	UCC	UCU	
UUA	UUG	UUC	UUU	

Watson (1965) Molecular Biology of the Gene - 1a. Edição - Benjamin

21

POLY U CODES FOR POLYPHENYLALANINE


Poly U was the first synthetic polyribonucleotide discovered to have mRNA activity. None of its bases are normally hydrogen bonded in solution, and it binds well to free ribosomes. It selects phenylalanine sRNA molecules exclusively, thereby forming a polypeptide chain containing only phenylalanine (polyphenylalanine). Thus we know that a codon for phenylalanine is composed of a group of three uridylic acid residues (UUU) (the group number 3 comes from the genetic experiments described in Chapter 9). Similarly, we are able tentatively to assign (CCC) as a proline codon and (AAA) as a lysine codon on the basis of analogous experiments with poly C and poly A. Unfortunately, the guanine residues in poly G firmly hydrogen bond to each other and form multistranded triple helices that do not bond to ribosomes. Thus this type of experiment cannot tell us whether (GGG) is a functional codon.

Watson (1965) Molecular Biology of the Gene – 1a. Edição - Benjamin

	The gen		de as of Ma	y, 170	Third position
First position (5' end)	U	C	position A	G	(3' end)
U	Phe	Ser	Tyr	Cys	U
U	Phe	Ser	Tyr	Cys	C
	Leu	Ser	Nonsense	-,-	A
	Leu	Ser	Nonsense	Try	G
С	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	C
		Pro	GluN	Arg	Α
		Pro	GluN	Arg	G
Α	lleu	Thr	AspN	Ser	U
	lleu	Thr	AspN	Ser	C
	lleu	Thr	Lys	Arg	Α
	Meth	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Gly	G

BACKGROUND

The Code in 1976

CAPÍTULO VI O CÓDIGO INFORMATIVO QUADRO VIII Mesmo depois de se conhecer, nas suas linhas gerais, o mecanismo pelo qual o DNA se transcreve e traduz, ainda era pouco mais que um sonho a pretensão de decifrar em termos químicos o código exacto segundo o qual cada aminoácido é arquivado no DNA. Entre os anos 60 e 70 esse sonho tornou-se realidade, e vamos percorrer sumariamente o fascinante processo científico que conduziu à revelação do mais íntimo segredo do DNA. O CÓDIGO GENÉTICO SEGUNDA BASE U G UUU) fen UAU tir UCU 1. O codão é um tripleto não-sobreposto e não-virgulado UUA leu UCA UCG UGA — UGG: trp UAA UAG a) São 20 os aminoácidos que, em combinações e proporções diferentes, entram na constituição das proteínas dos seres vivos. Por outro lado, são 4 as bases do DNA e do RNA. O número de arranjos completos das 4 bases tomadas duas a duas seria apenas 16 (insuficiente, portanto, para a codificação especifica dos aminoácidos). O número de arranjos completos das 4 bases, tomadas 3 a 3, é de 64 (mais que suficiente para os aminoácidos existentes). Estas considerações foram as primeiras a sugerir que a unidade de codificação, ou codão, seja formada por 3 nucleotídeos («tripleto»). A CUU CUC leu CCC CAU his CGU CGC U C CAA | gln A G AUU AUC AUA ile AUG : met ACU ACC AAU asn U AGU | ser AAA } lis AGA arg $b)\;\;$ A hipótese do código sobreposto («overlapping code») admitia que na série de bases os tripletos poderiam ser, tal como vai indicado, AG GUU GCU GCC GAU asp GGU GGC GGA GGG U A B C D E F G GUA GUG GAA) glu ABC, BCD, CDE, etc. Se assim fosse, deveria verificar-se uma frequente associação dos aminoácidos que se encontram lado a lado nas proteínas, e isso não se yerifica. a alteração de uma base deveria alterar mais do que um ami-noácido. Isto também não se verifica. Conhecem-se, há muito, vários Archer (1976) Genética Molecular - Edições Brotéria - Lisboa

BACKGROUND

Har Gobind Khorana

"We must be modest except in our aims"

Otto Loewi cited by Khorana

27

Har Gobind Khorana (1922-2011) هار گوبند خورانا

NPW 1968

Master in Chemistry at the University of Punjab in Lahore

Doctorate fellowship (PhD) in organic chemistry at the University of Liverpool, England.

Doctor degree obtained in 1948

Works at the ETH (Eidgenössische Technische Hoshschule) in Zurich - group of Vladimir Prelog (NPW 1975)

Finds the little known paper published by Fritz Zetzsche about the carbodiimides -> will latter use the method for the synthesis of nucleotide cofactors and ATP.

A year later runs out of money Zurich.

Fails at concourse in India and obtains a three year fellowship with Alexander Todd, University of Cambridge.

Is introduced to the results obtained by Sanger, Perutz, Kendrew and falls in love with Molecular Biology.

1952 - begins an independent career as non-academic researcher at the "British Columbia Research Council" in Vancouver, Canada. Synthesizes ATP and nucleotide cofactors

1960-1970. Moves to the Institute for Enzyme Research at the University of Wisconsin in Madison.

Shows that CUCUCU codes for a polypeptide with Leucine (CUC) and Serine (UCU).

Synthesizes the gene for $tRNA_{Ala}$ with the regulatory regions and shows that it functions inside a bacterial cell.

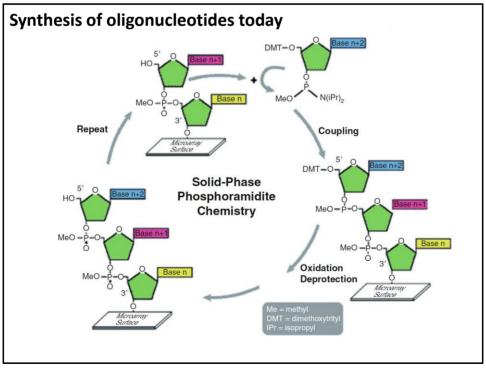
Leaves Madison and goes to the MIT where he works with bacteriorhodopsin.

29

H. Gobind Khorana F. Crick M. Grunberg-Manago

Cold Spring Harbor Symposium on the Genetic Code - 1966

Chemical synthesis of dinucleotides - Khorana


J. Am. Chem. Soc. 80:6212-6222, 1958

[CONTRIBUTION FROM THE CHEMISTRY DIVISION OF THE BRITISH COLUMBIA RESEARCH COUNCIL]

Studies on Polynucleotides. I. A New and General Method for the Chemical Synthesis of the $C_5'-C_3'$ Internucleotidic Linkage. Syntheses of Deoxyribo-dinucleotides¹

By P. T. GILHAM AND H. G. KHORANA RECEIVED APRIL 14, 1958

A new method has been developed for the specific synthesis of the naturally-occurring $(C_5'-C_8')$ internucleotidic linkage; it involves reaction of a suitably protected deoxynucleotide with a second protected deoxynucleoside or -nucleotide in the presence of dicyclohexylcarbodiimide or p-toluenesulfonyl chloride. By this approach the three dinucleoside phosphates VIIa, VIIb and VIIe have been prepared in good yield. Procedures are described for the synthesis of deoxyribo-dinucleotides bearing 5' or 3'-phosphoryl end-groups; these are illustrated by the synthesis of the two isomeric dithymidine dinucleotides (XII and XIV), and a mixed dinucleotide (XVI) containing the nucleosides, deoxyadenosine and thymidine. The results of enzymic and acidic degradative experiments are recorded and these provide additional characterization of the synthetic compounds. Some general observations on the scope and mechanism of this method of "phosphodiester" synthesis also are included.

J. Mol. Biol. (1971) 56, 341-361

Studies on Polynucleotides

XCVI.† Repair Replication of Short Synthetic DNA's as catalyzed by DNA Polymerases

K. Kleppe, † E. Ohtsuka, § R. Kleppe, † I. Molineux ||
AND H. G. KHORANA ||

Institute for Enzyme Research of the University of Wisconsin Madison, Wisc. 53706, U.S.A.

(Received 20 July 1970)

35

The principles for extensive synthesis of the duplexed tRNA genes which emerge from the present work are the following. The DNA duplex would be denatured to form single strands. This denaturation step would be carried out in the presence of a sufficiently large excess of the two appropriate primers. Upon cooling, one would hope to obtain two structures, each containing the full length of the template strand appropriately complexed with the primer. DNA polymerase will be added to complete the process of repair replication. Two molecules of the original duplex should result. The whole cycle could be repeated, there being added every time a fresh dose of the enzyme. It is however, possible that upon cooling after denaturation of the DNA duplex, renaturation to form the original duplex would predominate over the template-primer complex formation. If this tendency could not be circumvented by adjusting the concentrations of the primers, clearly one would have to resort to the separation of the strands and then carry out repair replication. After every cycle of repair replication, the process of strand separation would have to be repeated. Experiments based on these lines of thought are in progress.

The Journal of Biological Chemistry Vol. 240, No. 5, May 1965 Printed in U.S.A.

1965

Nucleotide Sequences in the Yeast Alanine Transfer Ribonucleic Acid*

ROBERT W. HOLLEY, GEORGE A. EVERETT, JAMES T. MADISON, AND ADA ZAMIR

From the United States Plant, Soil, and Nutrition Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, United States Department of Agriculture, and the Department of Biochemistry, Cornell University, Ithaca, New York

(Received for publication, November 27, 1964)

The purification of the yeast alanine-, tyrosine-, and valine-transfer ribonucleic acids by countercurrent distribution has been described (1), and preliminary data have been reported on the oligonucleotide compositions of these RNAs (2, 3). The present paper summarizes results of attempts to account quantitatively for all of the fragments obtained by digestion of the alanine-RNA with pancreatic RNase and with Taka-Diastase RNase T1. Results of the analyses of these two digests are consistent one with the other, and indicate that the alanine-RNA is composed of 77 nucleotides, including nine unusual nucleotides.

water. The column was then cluted with a continuous gradient produced from 240 ml of 0.04 m, 238 ml of 0.20 m, and 228 ml of 1.0 m ammonium carbonate in three chambers of a Varigrad (4). Fractions of approximately 3.4 ml were collected. A flow rate of approximately 10 ml per hour was obtained by placing the Varigrad 20 feet (6 meters) above the top of the column.

Chromatography of Pancreatic RNase Digest on DEAE-cellulose in 7 M Urea (5)—DEAE-cellulose (Carl Schleicher and Schuell, No. 70, standard) was washed thoroughly with 7 M urea and with sodium acetate in 7 M urea. A column (0.35 × 30 cm)

J. Mol. Biol. (1972) 72, 209-217

Studies on Polynucleotides†

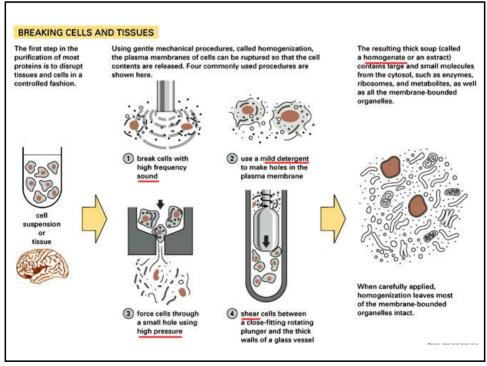
CIII.‡ Total Synthesis of the Structural Gene for an Alanine Transfer Ribonucleic Acid from Yeast

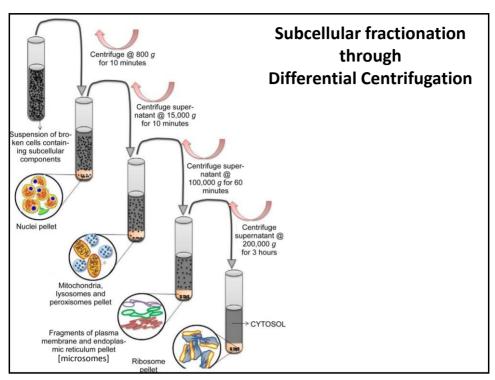
H. G. Khobana^a, K. L. Agarwal^a, H. Büchi^b, M. H. Caruthers^a,
N. K. Gupta^c, K. Kleppe^d, A. Kumar^e, E. Ohtsuka^c,
U. L. Rajbhandary^a, J. H. van de Sande^a, V. Sgaramella^g,
T. Terao^b, H. Webeeⁱ and T. Yamada^j

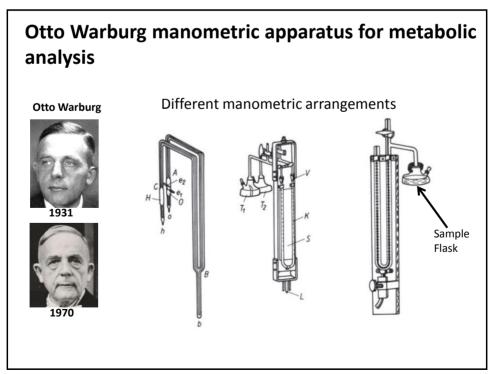
Institute for Enzyme Research of the University of Wisconsin and the Departments of Biology and Chemistry, Massachusetts Institute of Technology, Cambridge, Mass. 02139, U.S.A.

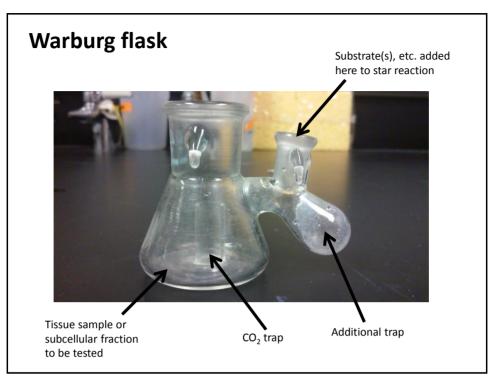
(Received 9 December 1971)

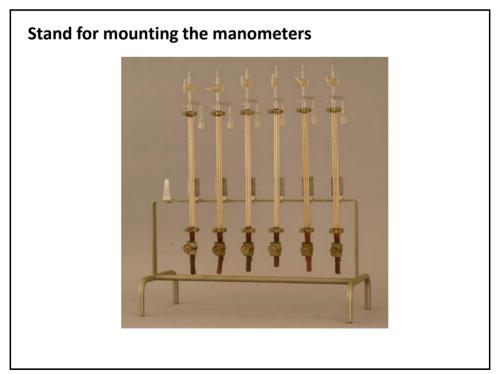
A plan for the total synthesis of the DNA duplex, 77 nucleotide units long, corresponding in sequence to the major yeast alanine transfer RNA, is formulated. The plan involves: (a) the chemical synthesis of 15 polydeoxynucleotide segments ranging in length from five to 20 nucleotide units and (b) ligase-catalyzed covalent joining of several segments to form three parts of the duplex, followed by joining of the three parts to construct the entire duplex. Twelve accompanying papers describe the experimental realization of this objective.

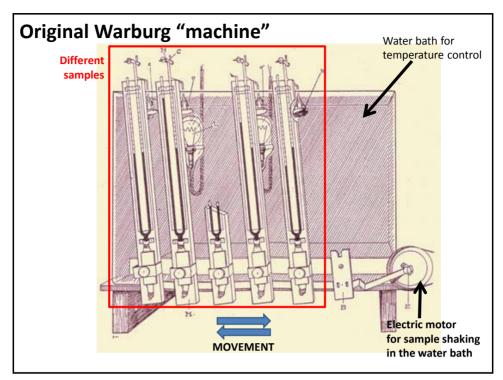

39

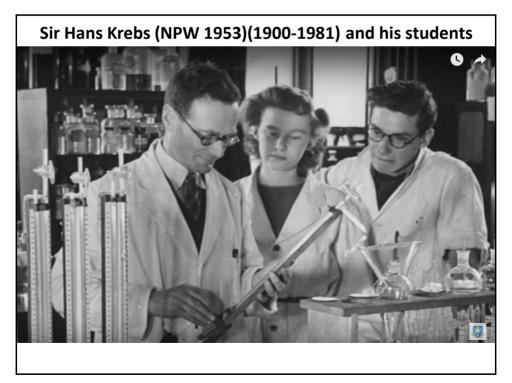

COFFEE BREAK


FRACIONAMENTO CELULAR


(MONTANDO O CENÁRIO)

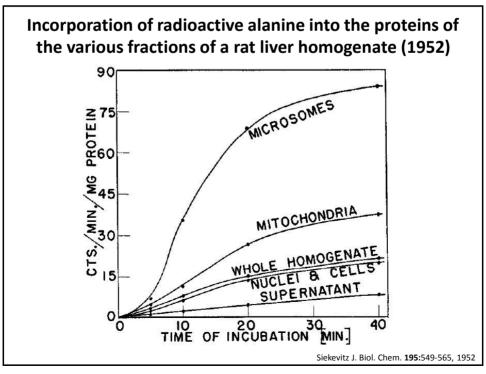

41





Setting up a "modern" Warburg apparatus with several samples

49



Some movies in YouTube about the Warburg apparatus setup and use

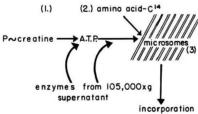
Warburg Manometer setup

https://www.youtube.com/watch?v=M-HYbZwN430 https://www.youtube.com/watch?v=TI41djHlh_o

51

Relation between me	tabolism of phosphorilated
compounds (ATP-like)	and protein synthesis

	Protein				PO4	α-Keto-	C.p.m. per mg. protein		
Fraction RAT LIVER	100 mg. wet weight tissue	Per cent weight	O ₂ per hr.	Qo,		tarate dis- appear- ing per 60 min.	Minus &- keto- glu- tarate	α- keto- glu-	
7	mg.		micro- atoms		μМ	μм			
Homogenate	17.6	100	37.3	24	3.6	19.1	1.4	10.8*	
Nuclei + cells	3.3	18	1.6	5	0.0		1.2	2.9	
Mitochondria	2.5	15	7.3	36	3.4	4.0	0.9	1.3	
Mixed fraction	2.2	14	1.1	6	0.0	3036400	1.7	1.1	
Microsomes	1.5	12	0.1	1	0.0	0.0	1.6	1.0	
Supernatant	7.8	40	1.2	1	0.0	0.0	0.1	0.4	
Mitochondria + microsomes	4.0	24	13.8	39	3.0	6.6	1.1	4.2	
<pre> ' + supernatant ' + microsomes + su-</pre>	10.3	55	17.1	19	4.6	7.9	1.0	6.6	
pernatant	11.8	64	20.8	20	3.5	10.7	0.8	9.8	
All fractions		98	38.9	25	3.4	18.8	0.8	10.5	


^{* 0.012} μ M of L-alanine per gm. of protein per 30 minutes.

Siekevitz J. Biol. Chem. 195:549-565, 1952

53

Biochemical and molecular biological sketches for protein synthesis

ZAMECNIK'S BIOCHEMICAL FLOW FOR PROTEIN SYNTHESIS, 1953

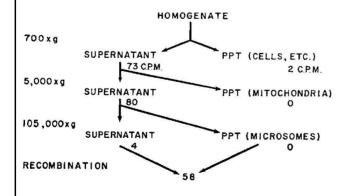
WATSON'S FLOW OF INFORMATION, FEBRUARY 1954

chemical transformation?
decribose - ribose

7DNA - RNA

complement complement
replication replication

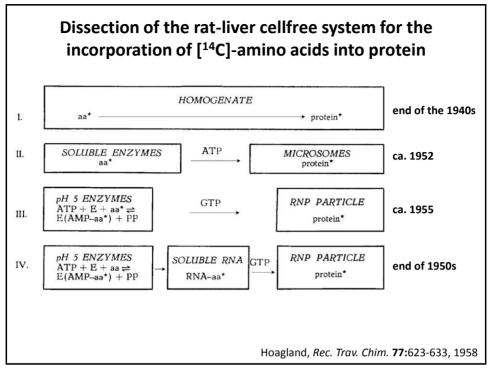
protein (Gamow holes?)
Darden & Craver, Stud. Hist. Phil. & Biomed. Sci. 33:1-28, 2002


Mahlon Hoagland & Paul Zamecnik, ca. 1984

Pederson, FASEB J. 19:1583-1584, 2005

55

Fracionamento e recombinação do extrato de fígado de rato



CONDIÇÕES:

DL-Leucina-1-¹⁴C (0,25 μM, 300.000 cpm) MgCl₂ 4mM, NAD 10mM, Tampão fosfato pH7,4 40 mM, 2P-glicose 10 mM, sacarose 250 mM.

Zamecnik & Keller, *JBC* **209:**337-354, 1954 – *cit. in*

Rheinberger in Protein Synthesis and Ribosome Structure (Niehaus & Wilson, eds.), p.1-51, 2004

NIRENBERG et al.

Marshall Nirenberg

1927 - is born on April 10th in NYC

1941 – Rheumatic fever -> moves to Orlando, FL

1948 - BS (Zoology and Chemistry)

1952 - MS (Zoology)

1957 - PhD (Biological Chemistry)

1959-60 - Postdoc

1961 - Describes the experiment with poly U in Moscow at the International Congress of Biochemistry (August) (Nirenberg & Matthaei)

1963-66 - Completes the genetic code

59

1965-69 - Go to study neurobiology

1967 – begins the study of neuroblastoma.

1968 – receives the Nobel Prize with RW Holey e HG Khorana

1969 - publishes his first paper on neurobiology with Philip Nelson.

1973 – Studies the efect of morphine in the Nervous System

1976 - Begins the work with receptors of nerve cells in retina of chicks.

2010 - dies on January 15

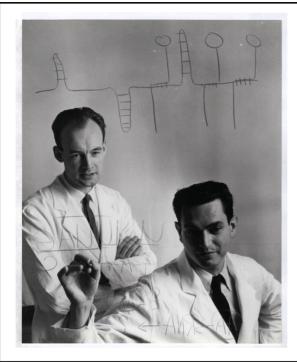
President Arthur Costa E Silva Palacio Da Alvorada Brasilia

Dear Mister President:

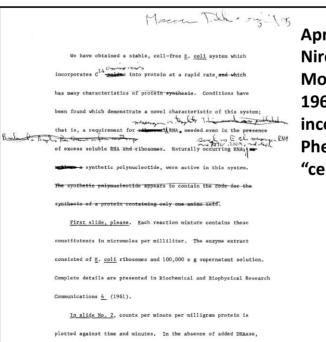
The recent decision of your government to remove a number of Brazil's leading scientists and scholars from their University positions is a matter of grave concern to us. We feel that to deprive Brazil of the benefit of the intellecutal and scientific leadership provided by such internationally eminent scientists as Frofs. Isaias Raw, Alberto Carvalho da Silva and Helio Lourenco decliveira among others, will cause inestimable damage to the progress of science and education in Brazil. Moreover, the anti-intellectual image of the government, created by this unfortunate action, is certain to have serious repercussions among scientists in the world community, whose sympathy and cooperation is essential to the continued technological development of Brazil.

We appeal to you to look personally into this matter in order that these scholars are returned to their institutions and encouraged to pursue their work in a climate of intellectual freedom.

Manshall Number


http://profiles.nlm.nih.gov/ps/access/KKBBFR.pdf#xml=http://profiles.nlm.nih.gov/pdfhighlight?uid=KKBBFR&query=%28lsaias%20Raw%29

61


Marshall Nirenberg e Heinrich Matthaei – aprox. 1961

Primeiro pos-doc de Nirenberg com quem publicou o famoso experimento do poli-U

Marshall Nirenberg e Heinrich Matthaei – aprox. 1962

63

valine was rapidly incorporated into protein. At the end of 90 minutes

Apresentação de Nirenberg em Moscou (Agosto de 1961) sobre a incorporação de ¹⁴C-Phe num sistema "cell-free" com poli-U

Apresentação de Nirenberg em Moscou (Agosto de 1961) sobre a incorporação de ¹⁴C-Phe num sistema "cell-free" com poli-U

puromycin, chloramphenicol and RNAase. Addition of poly-U resulted

red of property of physicians.

In the incorporation of phenylaianine alone into a protein resembling

The centre of the public story of the polyphonylaianine. Poly-U appears to function as a synthetic template,

or messenger RNA. (In this system.

Or messenger RNA. (In this system.

Or messenger RNA. (In this system.

Or messenger RNA. (In this system.)

65

Marshall Nirenberg no laboratório – aprox. 1962

CSH Symposium on protein synthesis

1966

Phil Leder discussing with coleagues

http://www.dnaftb.org/images/22/16501_leder2.jpg

67

Declaration of Marshall Nirenberg about the code deciphering

http://www.dnaftb.org/22/av.html

Codon usage table of *E. coli* based on all ORFs of the genome

CODON USAGE IN E. COLI GENES1

	Codon	Amino acid ²	₉₈ 3	Ratio ⁴	Codon	Amino acid	98	Ratio	Codon	Amino acid	98	Ratio	Codon	Amino acid	%	Ratio	
U	บบบ	Phe (F)	1.9	0.51	UCU	Ser (8)	1.1	0.19	UAU	Tyı (Y)	1.6	0.53	UGU	Cys (C)	0.4	0.43	
	UUC	Phe (F)	1.8	0.49	UCC	Ser (8)	1.0	0.17	UAC	Tyz (Y)	1.4	0.47	UGC	Cys(C)	0.6	0.57	
	UUA	Leu (L)	1.0	0.11	UCA	Ser (8)	0.7	0.12	UAA	STOP	0.2	0.62	UGA	STOP	0.1	0.30	
	UUG	Leu (L)	1.1	0.11	UCG	Ser (8)	8.0	0.13	UAG	STOP	0.03	0.09	UGG	Trp (V)	1.4	1.00	
C	CUU	Leu (L)	1.0	0.10	CCU	Pro(P)	0.7	0.16	CAU	His(H)	1.2	0.52	CGU	Aig (R)	2.4	0.42	
	CUC	Leu (L)	0.9	0.10	ccc	P10 (P)	0.4	0.10	CAC	His (H)	1.1	0.48	CGC	Aig (R)	2.2	0.37	
	CUA	Leu (L)	0.3	0.03	CCA	Pro(P)	8.0	0.20	CAA	Gln (Q)	1.3	0.31	CGA	Aig (R)	0.3	0.05	
	CUG	Leu (L)	5.2	0.55	CCG	Pro(P)	2.4	0.55	CAG	Gln (Q)	2.9	0.69	CGG	Aig (R)	0.5	0.08	
A	AUU	Ile (I)	2.7	0.47	ACU	Thu (T)	1.2	0.21	AAU	Asn (N)	1.6	0.39	AGU	Ser (8)	0.7	0.13	
	AUC	He (I)	2.7	0.46	ACC	Thr (T)	2.4	0.43	AAC	Asn (N)	2.6	0.61	AGC	Ser (8)	1.5	0.27	
	AUA	He (I)	0.4	0.07	ACA	Thr (T)	0.1	0.30	AAA	Lys (K)	3.8	0.76	AGA	Aig (R)	0.2	0.04	
	AUG	Met (M)	2.6	1.00	ACG	Thu (T)	1.3	0.23	AAG	Lys (K)	1.2	0.24	AGG	Aig (R)	0.2	0.03	
G	GUU	Val(V)	2.0	0.29	GCU	Ala (A)	1.8	0.19	GAU	Asp (D)	3.3	0.59	GGU	Gly (G)	2.8	0.38	
	GUC	Val(♥)	1.4	0.20	GCC	Ala (A)	2.3	0.25	GAC	Asp (D)	2.3	0.41	GGC	Gly (G)	3.0	0.40	
	GUA	Val(♥)	1.2	0.17	GCA	Ala (A)	2.1	0.22	GAA	Glu(E)	4.4	0.70	GGA	Gly (G)	0.7	0.09	
	GUG	Val(♥)	2.4	0.34	GCG	Ala (A)	3.2	0.34	GAG	Glu(E)	1.9	0.30	GGG	Gly (G)	0.9	0.13	
		U				Č				À				Ğ			

69

Codon usage table of *E. coli* based on all ORFs of the genome

CODON USAGE IN E. COLI GENES1

	Codon	Amino acid ²	983	Ratio ⁴	Codon	Amino açid	98	Ratio	Codon	Amino acid	98	Ratio	Codon	Amino acid	98	Ratio	
U	UUU	Phe (F)	1.9	บบบ	= 0,5	51 (S)	1.1	0.19	UAU	Tyı (Y)	1.6	0.53	UGU	Cys (C	0.4	0.43	Ţ
	UUC	Phe (F)	1.8	uuc	= 0.4	9 (8)	1.0	0.17	UAC	Tyr (Y)	1.4	0.47	UGC	Cys(C	0.6	0.57	1
	UUA	Leu (L)	1.0	0.11	OCA.	əci (8)	0.7	0.12	UAA	STOP	0.2	0.62	UGA	STOP	0.1	0.30	A
	UUG	Leu (L)	1.1	0.11	UCG	Ser (8)	8.0	CCI	1 - 0 1	OP	0.03	0.09	UGG	Trp (%	1.4	1.00	1
С	CUU	Leu (L)	1.0	0.10	CCU	Pro(P)	0.7		J = 0,1	5(H)	1.2	0.52	CGU	Aig (E	2.4	0.42	I
	CUC	Leu (L)	0.9	0.10	ccc	Pro(P)	0.4	CCC	c = 0,1	.O _{s(EI)}	1.1	0.48	CGC	Arg (R)	2.2	0.37	1
	CUA	Leu (L)	0.3	0.03	CCA	Pro(P)	8.0	CCA	$\lambda = 0,2$	1(0)	1.3	0.31	CGA	Aig (E	0.3	0.05	1
	CUG	Leu (L)	5.2	0.55	CCG	P10(P)	2.4	CCG	i = 0.5	5 1(Q)	2.9	0.69	CGG	Aig (E	0.5	0.08	1
A	AUU	He (I)	2.7	0.47	ACU	Thu (T)	1.2	0.51	AAO	7331 (N)	1.6	0.39	AGU	Ser (8	0.7	0.13	I
	AUC	He (I)	2.7	0.46	ACC	Thr (T)	2.4	0.43	AAC	Asn (N)	2.6	061	ACC	Ser (8)	1.5	0.27	(
	AUA	He (I)	0.4	0.07	ACA	Thu (T)	0.1	0.30	AAA	Lys (K)	3.8	AAA = 0,	= 0,7	6 (R	0.2	0.04	A
	AUG	Met (M)	2.6	1.00	ACG	Thr (T)	1.3	0.23	AAG	Lys(K)	1.2	AAG	i = 0.2	4 (18	0.2	0.03	
G	GUU	Val(♥)	2.0	0.29	GCU	Ala (A)	1.8	0.19	GAU	Asp (D)	3.3	עכ.ט	GGU	GIY (G	2.8	0.38	Ţ
	GUC	Val(V)	1.4	0.20	GCC	Ala (A)	2.3	0.25	GAC	Asp (D)	2.3	0.41	GGC	Gly (G	3.0	0.40	(
	GUA	Val(♥)	1.2	0.17	GCA	Ala (A)	2.1	0.22	GAA	Glu(E)	4.4	0.70	GGA	Gly (G	0.7	0.09	A
	GUG	Val(∀)	2.4	0.34	GCG	Ala (A)	3.2	0.34	GAG	Glu(E)	1.9	0.30	GGG	Gly (G	0.9	0.13	1
		U				С			Á				G				

Nirenberg Lab – 1968

https://profiles.nlm.nih.gov/ps/retrieve/ResourceMetadata/JJBCCQ