
The construction of the Dayhoff 

matrix 
 

A model of evolution: 

In the absence of a valid model derived from first 

principles, an empirical approach seems more 

appropriate to score amino acid similarity. This 

approach is based on the assumption that once the 

evolutionary relationship of two sequences is 

established, the residues that did exchange are 

similar. This is the principle behind the mutation 

matrices compiled by Margaret O. Dayhoff and 

colleagues at the National Biomedical Research 

Foundation in the early 70s (Dayhoff, M.O. et al. 

(1978) Atlas of Protein Sequence and Structure. Vol. 

5, Suppl. 3 National Biomedical Research 

Foundation, Washington D.C. U.S.A). They 

developed a precise and rigorous approach to 

implement a model of evolutionary change in their 

muatation data matrix.Their model allows to quantify 

the odds that a given alignment of two protein 

sequences would be observed by chance or would 

demonstrate an echo of a common ancestral sequence.  

We will discuss this approach in some detail as a 

paradigm for the construction of any mutation data 

matrix. Note that any scoring matrix is a tool to 

measure the degree of conformity to the model 

underlying the construction of the matrix. Two amino 

acids will be termed similar, if they conform well to 

the model behind the matrix. An alignment is optimal, 

if it scores better in the application of the matrix than 

any other alignment. And two proteins will be 

significantly related, if the evolutionary process 

explains the relationship between their sequences 

better than chance. Since different mutation data 

matrices are appropriate for different alignment 

problems and the matrices sometimes even have to be 

edited by hand to solve difficult problems, the 

following section discusses some of the principles 

behind the construction of mutation data matrices and 

their use.  

How is the Dayhoff mutation data matrix constructed 

? Since we are looking for a matrix that will 

recognize significant evolutionary relationships, we 

must first define a model of evolution. The model 

used here states that proteins evolve through a 

succesion of independent point mutations, that are 

accepted in a population and subsequently can be 

observed in the sequence pool. Formally, the fact 

that the mutations are treated independent of their 

neigborhood and of their history makes this a Markov 

model. We can define an evolutionary distance 

between two sequences as the number of point 

mutations that was necessary to evolve one sequence 

into the other. (More specifically, the distance is the 

minimal number of mutations.) Two aspects of this 

process cause the evolutionary distance to be unequal 

in general to the number of observed differences 

between the sequences:  

• First, there is a chance that a certain residue 

may have mutated, than reverted, hiding the 

effect of the mutation. This phenomenon is 

important in the evaluation of biological 

clocks and the question of how many 

mutational events may become fixed per time 

unit. In the context of the discussion of 

mutation matrices we do not need to consider 

this effect.  

• Second, specific residues may have mutated 

more than once, thus the number of point 

mutations is likely to be larger than the 

number of differences between the two 

sequences. This has to be taken into account.  

First step: Pair Exchange 

Frequencies 

PAMs: 

M.O. Dayhoff and colleagues introduced the term 

"accepted point mutation" for a mutation that is 

stably fixed in the gene pool in the course of 

evolution. Thus a measure of evolutionary distance 

between two sequences can be defined: 

 

 

In order to identify accepted point mutations, a 

complete phylogenetic tree including all ancestral 

sequences has to be constructed. (There are standard 

procedures for this, which we will discuss at a later 

point.) To avoid a large degree of ambiguities in this 

step, Dayhoff and colleagues restricted their analysis 

to sequence families with more than 85% identity. 

Since the evolutionary distance between these highly 

homologous proteins is small, the construction of the 

phylogenetic tree can be achieved without to many 

complicating assumptions. For each of the observed 

and inferred sequences, the amino acid pair 

exchanges are tabulated into a 20x20 matrix. It is 

assumed, that the likelihood of an amino-acid X being 

replaced by an amino acid Y is the same as Y 

replacing X. Hence the matrix is constructed 

:=  A PAM (Percent accepted mutation) is 
one accepted point mutation on the path 
between two sequences, per 100 
residues.  



symmetrically. (This assumption is probably largely 

true, if it were not, the amino acid composition of 

proteins would be in evolutionary disequilibrium.) 

Note that this process is different from comparing 

observed sequences directly with each other ! Aij is 
the number of accepted mutations observed where 

amino acid i replaces amino acid j.  

Second step: Frequencies of 

Occurrence 

If the properties of amino acids differ and if they 

occur with different frequencies, all statements we 

can make about the average properties of sequences 

will depend on the frequencies of occurence of the 

individual amino acids. These frequencies of 

occurence are approximated by the frequencies of 

observation. They are the number of occurences of a 

given amino acid divided by the number of amino-

acids observed.  
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Amino acid frequencies: 

         1978        1991 

L       0.085       0.091 

A       0.087       0.077 

G       0.089       0.074 

S       0.070       0.069 

V       0.065       0.066 

E       0.050       0.062 

T       0.058       0.059 

K       0.081       0.059 

I       0.037       0.053 

D       0.047       0.052 

R       0.041       0.051 

P       0.051       0.051 

N       0.040       0.043 

Q       0.038       0.041 

F       0.040       0.040 

Y       0.030       0.032 

M       0.015       0.024 

H       0.034       0.023 

C       0.033       0.020 

W       0.010       0.014 

The frequencies in the middle column are taken from 

Dayhoff (1978), the frequencies in the right column 

are taken from the 1991 recompilation of the mutation 

matrices by Jones et al. (Jones, D.T. Taylor, W.R. & 

Thornton, J.M. (1991) CABIOS 8:275-282) 

representing a database of observations that is 

approximately 40 times larger than that available to 

Dayhoff. Reassuringly, the changes are small. Note 

the higher abundance of hydrophobic residues, this 

may reflect the addition of many membrane proteins 

to the sequence databases in the time since 1978. 

Third step: Relative Mutabilities 

To obtain a complete picture of the mutational 

process, the amino-acids that do not mutate must be 

taken into account too. We need to know: what is the 

chance, on average, that a given amino acid will 

mutate at all. This is the relative mutability of the 

amino acid. It is obtained by multiplying the number 

of observed changes by the amino acids frequency of 

occurence. 

mi = fi (number of times i is observed to change) 

Relative mutabilities of amino acids: 

         1978        1991 

A         100         100 

C          20          44 

D         106          86 

E         102          77 

F          41          51 

G          49          50 

H          66          91 

I          96         103 

K          56          72 

L          40          54 

M          94          93 

N         134         104 

P          56          58 

Q          93          84 

R          65          83 

S         120         117 

T          97         107 

V          74          98 

W          18          25 

Y          41          50 

All values are taken relative to alanine, which is 

arbitrarily set at 100. Again, the 1991 data are from 

Jones et al. and the 1978 data from Dayhoff et al. The 

difference for some amino acids are quite significant, 

especially for those amino acids, for which hardly any 

exchanges have been observed in 1978 (C and W). 

Serine and threonine are the most mutable amino 

acids, cysteine and tryptophane are the most 

immutable.  

Fourth step: Mutation Probability 

Matrix 

With these data the probability that an amino acid in 

row i of the matrix will replace the amino acid in 

column j can be calculated: it is the mutability of 



amino acid j, multiplied by the relative pair exchange 

frequency (the pair exchange frequency for ij divided 

by the sum of all pair exchange frequencies for amino 

acid i).  
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Aij is a pair exchange frequency from the tabulated 

matrix of accepted point mutations, mj is the 

mutability of amino acid j 

The diagonal elements represent the probability, that 

the amino acid will remain unchanged: they are (the 

number of ocurrences - the number of changes) 

divided by the number of occurences, or, simplified, 

mM jij
−=1  

Fifth step: The Evolutionary 

Distance Scale 

Since the represent the probabilites for amino acids 

to remain conserved, if we scale all cells of our 

matrix by a constant factor we can scale the matrix 

to reflect a specific overall probability of change. We 

may chose so that the expected number of changes is 

1 %, this gives the matrix for the evolutionary 

distance of 1 PAM. An average protein will have the 

composition: 

Nfn ii
=  

with N being the length of the protein and ni the 

number of amino acids of a certain type. The number 

of amino acids of type i that will change in the 

evolutionary interval represented by this matrix is 

Mn iji
 

and the number of total changes is the sum over all 

individual changes: 

Mn iji
 

after introduction of the scaling factor λ, the mutation 

probability elements become 
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and the diagonal elements become 

mM jij λ−= 1  

It is apparent that the number of amino acids that are 

expected to change according to the matrix depends 

only on the factor . But this is true only for the 

evolutionary distances, from which the data were 

compiled. In the case of the Dayhoff matrices, where 

sequences with les than 15 % differences were used, 

scaling for 1 to 5 PAM should be permissible, from 

the original data. For higher evolutionary distances, 

extrapolation can not be simply done by adjusting , 

since this would neglect overlapping mutations. 

In the framework of this model, a mutation 

probability matrix for any distance can be 

obtained by multiplying the 1 PAM matrix with 

itself the required number of times. Thus the 3 

PAM matrix is simply the cube of the 1 PAM matrix. 

Obviously, the accuracy of this process of 

extrapolation will depend on the accuracy of the 1 

PAM matrix - but up to that accuracy, it is rigorously 

correct. 

Two facts should be pointed out: 

The matrix at time PAM 0 is simply the unitary 

matrix... 

 

The Matrix at infinite evolutionary disatance is: 

 

Thus at large distances, the amino acids are simply 

expected to be replaced according to the the average 

composition - the protein mutates beyond 

recognizabiltiy. 

Estimation of evolutionary distance: 



As noted above, the diagonal matrix elements give an 

indication of the evolutionary interval.It is clear, that 

the evolutionary interval is only equivalent to the % 

difference between two sequences at very low PAM 

distances. The correspondence is given below: 

 

     %Difference        PAM 

           1              1 

           5              5 

          10             11 

          15             17 

          20             23 

          25             30 

          30             38 

          35             47 

          40             56 

          45             67 

          50             80 

          55             94 

          60            112 

          65            133 

          70            159 

          75            195 

          80            246 

          85            328 

 

 Note that the PAM250 matrix corresponds to 

approxiamtely 20% identities. the 50% identities level 

is approximately PAM100 

 The asymptote of this function is the % 

difference score of two randomly aligned sequences: 

since the probability for the chance occurence of an 

amino acid pair is the product of the probabilites for 

each amino acid, the probability for amino acid 

identities is the square of the probabilities for each 

amino acid. Thus the expected percent difference 

score is )1(100
20

1

2

∑
=

−
i

i
f . For the Jones and Taylor 

tabulation of frequencies this is 94.2%. This is close 

to the value of 95% that you would expect if all 

amino acids occured with equal frequencies. This 

means: even for randomly aligned sequences, you 

would expect to get around 5% identities. 

 

Sixth step: Relatedness odds 
 

The mutation probability matrix gives the probability 

, that an amio acid i will replace an amino acid of 

type j in a given evolutionary interval, in two related 

sequences, given the evolutionary model we have 

applied. By comparison, the probability that that same 

event is observed by random chance is simply 

given by the frequency of occurence of amino acid i. 

fp
i

ran

i
=  

Then the relative odds that a given event is due to 

evolution, rather than chance are 

p

M
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i
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Final step: the log-odds matrix 
 

Finally we have a tool to quantify the probability that 

two sequences are homologous, i.e. related by 

evolution. The relatedness odds for one aligned pair 

are given by the corresponding matrix element. The 

relatedness odds for a second pair are multiplied with 

those of the first pair to give the joint probability. 

This is done for all aligned pairs of the whole 

sequence. Since multiplication is a computationally 

expensive process, it is preferrable to add the 

logarithms of the matrix elements. This matrix, the 

log odds matrix, is the foundation of quantitative 

sequence comparisons under an evolutionary model. 

Since the Dayhoff matrix was taken as the log to base 

10, a value of +1 would mean that the corresponding 

pair has been observed 10 times more frequently than 

expected by chance. A value of -0.2 would mean that 

the observed pair was observed 1.6 times less 

frequently than chance would predict. The most 

commonly used matrix is the matrix from the 1978 

edition of the Dayhoff atlas, at PAM 250: this is also 

frequently referred to as the MDM78 PAM250 

matrix.



The MDM78 PAM 250 matrix: 
Alternate symbol comparison table for the comparison of peptide 

sequences. 

 

Dayhoff table (Dayhoff, M. O., Schwartz, R. M., and Orcutt, B. C. [1979] 

in Atlas of Protein Sequence and Structure, Dayhoff, M. O. Ed, pp. 

345-352 (Figure 84), National Biomedical Research Foundation, Washington 

D.C.) rescaled by dividing each value by 5.0 

 

 

                     May 24, 1990  16:47 

 
  A    B    C    D    E    F    G    H    I    K    L    M    N    P    Q    R    S    T    V    W    Y    Z    

 0.4  0.0 -0.4  0.0  0.0 -0.8  0.2 -0.2 -0.2 -0.2 -0.4 -0.2  0.0  0.2  0.0 -0.4  0.2  0.2  0.0 -1.2 -0.6  0.0 A 

      0.5 -0.9  0.6  0.4 -1.0  0.1  0.3 -0.4  0.1 -0.7 -0.5  0.4 -0.2  0.3 -0.1  0.1  0.0 -0.4 -1.1 -0.6  0.4 B 

           2.4 -1.0 -1.0 -0.8 -0.6 -0.6 -0.4 -1.0 -1.2 -1.0 -0.8 -0.6 -1.0 -0.8  0.0 -0.4 -0.4 -1.6  0.0 -1.0 C 

                0.8  0.6 -1.2  0.2  0.2 -0.4  0.0 -0.8 -0.6  0.4 -0.2  0.4 -0.2  0.0  0.0 -0.4 -1.4 -0.8  0.5 D 

                     0.8 -1.0  0.0  0.2 -0.4  0.0 -0.6 -0.4  0.2 -0.2  0.4 -0.2  0.0  0.0 -0.4 -1.4 -0.8  0.6 E 

                          1.8 -1.0 -0.4  0.2 -1.0  0.4  0.0 -0.8 -1.0 -1.0 -0.8 -0.6 -0.6 -0.2  0.0  1.4 -1.0 F 

                               1.0 -0.4 -0.6 -0.4 -0.8 -0.6  0.0 -0.2 -0.2 -0.6  0.2  0.0 -0.2 -1.4 -1.0 -0.1 G 

                                    1.2 -0.4  0.0 -0.4 -0.4  0.4  0.0  0.6  0.4 -0.2 -0.2 -0.4 -0.6  0.0 -0.4 H 

                                         1.0 -0.4  0.4  0.4 -0.4 -0.4 -0.4 -0.4 -0.2  0.0  0.8 -1.0 -0.2 -0.4 I 

                                              1.0 -0.6  0.0  0.2 -0.2  0.2  0.6  0.0  0.0 -0.4 -0.6 -0.8  0.1 K 

                                                   1.2  0.8 -0.6 -0.6 -0.4 -0.6 -0.6 -0.4  0.4 -0.4 -0.2 -0.5 L 

                                                        1.2 -0.4 -0.4 -0.2  0.0 -0.4 -0.2  0.4 -0.8 -0.4 -0.3 M 

                                                             0.4 -0.2  0.2  0.0  0.2  0.0 -0.4 -0.8 -0.4  0.2 N 

                                                                  1.2  0.0  0.0  0.2  0.0 -0.2 -1.2 -1.0 -0.1 P 

                                                                       0.8  0.2 -0.2 -0.2 -0.4 -1.0 -0.8  0.6 Q 

                                                                            1.2  0.0 -0.2 -0.4  0.4 -0.8  0.6 R 

                                                                                 0.4  0.2 -0.2 -0.4 -0.6 -0.1 S 

                                                                                      0.6  0.0 -1.0 -0.6 -0.1 T 

                                                                                           0.8 -1.2 -0.4 -0.4 V 

                                                                                                3.4  0.0 -1.2 W 

                                                                                                     2.0 -0.8 Y 

                                                                                                          0.6 Z 

 

The variant of the MDM78 PAM250 used in the GCG package 

 
 

The matrix in most widespread use is entirely derived from the Dayhoff MDM78 (Gribskov, M. & Burgess, R.R. (1986) NAR 14:6745-6763). It has been 

renormalized to give a score of 1.5 for identical residues, and the scores for non-identical residues have been adjusted to give a mean of -0.17 and a standard 

deviation of 0.364. The negative expectation value is necessary for local alignment routines, since a positive expectation value would allow to increase the score 



simply by extending random alignments. Note that these normalizations constitute a significant departure from the evolutionary model as discussed above. 

Specifically, the interpretation in terms of a specific evolutionary distance is now no longer possible. 

This Matrix is the default matrix used by most routines of the UWGCG program package and it is stored in the runtime data directory (logical name 

GENRUNDATA:) under the following names: 
 
COMPARPEP.CMP 

NWSGAPPEP.CMP 

PEPDISTANCES.CMP 

PILEUPPEP.CMP 

PLOTSIMPEP.CMP 

PRETTYPEP.CMP 

PROFILEPEP.CMP 

REPEATPEP.CMP 

SEGGAPPEP.CMP 

SEGPEP.CMP 

SWGAPPEP.CMP 

 

 

 

 

 

 

 

 

 

 

The GCG matrix: 

 
Default scoring matrix used by COMPARE for the comparison of 

protein sequences. 

 

Dayhoff table (Schwartz, R. M. and Dayhoff, M. O. [1979] in Atlas of 

Protein Sequence and Structure, Dayhoff, M. O. Ed, pp. 353-358, National 

Biomedical Research Foundation, Washington D.C.) rescaled by dividing 

each value by the sum of its row and column, and normalizing to a mean 

of 0 and standard deviation of 1.0.  The value for FY (Phe-Tyr) = RW = 

1.425.  Perfect matches are set to 1.5 and no matches on any row are 

better than perfect matches. 

 

Table used by Gribskov and Burgess NAR 14(16) 6745-6763 

 



 

                     December 29, 1986  12:46 

 

  A    B    C    D    E    F    G    H    I    K    L    M    N    P    Q    R    S    T    V    W    Y    Z  .. 

 1.5  0.2  0.3  0.3  0.3 -0.5  0.7 -0.1  0.0  0.0 -0.1  0.0  0.2  0.5  0.2 -0.3  0.4  0.4  0.2 -0.8 -0.3  0.2 A 

      1.1 -0.4  1.1  0.7 -0.7  0.6  0.4 -0.2  0.4 -0.5 -0.3  1.1  0.1  0.5  0.1  0.3  0.2 -0.2 -0.7 -0.3  0.6 B 

           1.5 -0.5 -0.6 -0.1  0.2 -0.1  0.2 -0.6 -0.8 -0.6 -0.3  0.1 -0.6 -0.3  0.7  0.2  0.2 -1.2  1.0 -0.6 C 

                1.5  1.0 -1.0  0.7  0.4 -0.2  0.3 -0.5 -0.4  0.7  0.1  0.7  0.0  0.2  0.2 -0.2 -1.1 -0.5  0.9 D 

                     1.5 -0.7  0.5  0.4 -0.2  0.3 -0.3 -0.2  0.5  0.1  0.7  0.0  0.2  0.2 -0.2 -1.1 -0.5  1.1 E 

                          1.5 -0.6 -0.1  0.7 -0.7  1.2  0.5 -0.5 -0.7 -0.8 -0.5 -0.3 -0.3  0.2  1.3  1.4 -0.7 F 

                               1.5 -0.2 -0.3 -0.1 -0.5 -0.3  0.4  0.3  0.2 -0.3  0.6  0.4  0.2 -1.0 -0.7  0.3 G 

                                    1.5 -0.3  0.1 -0.2 -0.3  0.5  0.2  0.7  0.5 -0.2 -0.1 -0.3 -0.1  0.3  0.5 H 

                                         1.5 -0.2  0.8  0.6 -0.3 -0.2 -0.3 -0.3 -0.1  0.2  1.1 -0.5  0.1 -0.2 I 

                                              1.5 -0.3  0.2  0.4  0.1  0.4  0.8  0.2  0.2 -0.2  0.1 -0.6  0.4 K 

                                                   1.5  1.3 -0.4 -0.3 -0.1 -0.4 -0.4 -0.1  0.8  0.5  0.3 -0.2 L 

                                                        1.5 -0.3 -0.2  0.0  0.2 -0.3  0.0  0.6 -0.3 -0.1 -0.1 M 

                                                             1.5  0.0  0.4  0.1  0.3  0.2 -0.3 -0.3 -0.1  0.4 N 

                                                                  1.5  0.3  0.3  0.4  0.3  0.1 -0.8 -0.8  0.2 P 

                                                                       1.5  0.4 -0.1 -0.1 -0.2 -0.5 -0.6  1.1 Q 

                                                                            1.5  0.1 -0.1 -0.3  1.4 -0.6  0.2 R 

                                                                                 1.5  0.3 -0.1  0.3 -0.4  0.0 S 

                                                                                      1.5  0.2 -0.6 -0.3  0.1 T 

                                                                                           1.5 -0.8 -0.1 -0.2 V 

                                                                                                1.5  1.1 -0.8 W 

                                                                                                     1.5 -0.6 Y 

                                                                                                          1.1 Z 

 

formatado de: http://www.lmb.uni-muenchen.de/Groups/Bioinformatics/04/ch_04_3.html 


