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(Redirected from Eigenvector)

In mathematics, an eigenvector   of a transformation
[1]

 is a

non-null vector whose direction is unchanged by that transformation.

The factor by which the magnitude is scaled is called the

eigenvalue  of that vector. (See Fig. 1.) Often, a transformation is

completely described by its eigenvalues and eigenvectors. An

eigenspace is a set of eigenvectors with a common eigenvalue.

These concepts play a major role in several branches of both pure

and applied mathematics — appearing prominently in linear algebra,

functional analysis, and to a lesser extent in nonlinear situations.

It is common to prefix any natural name for the solution with eigen

instead of saying eigenvector. For example, eigenfunction if the

eigenvector is a function, eigenmode if the eigenvector is a harmonic

mode, eigenstate if the eigenvector is a quantum state, and so on

(e.g. the eigenface example below). Similarly for the eigenvalue, e.g.

eigenfrequency if the eigenvalue is (or determines) a frequency.

Fig. 1. In this shear transformation of the Mona

Lisa, the picture was deformed in such a way

that its central vertical axis (red vector) was

not modified, but the diagonal vector (blue) has

changed direction. Hence the red vector is an

eigenvector of the transformation and the blue

vector is not. Since the red vector was neither

stretched nor compressed, its eigenvalue is 1.

All vectors along the same vertical line are also

eigenvectors, with the same eigenvalue. They

form the eigenspace for this eigenvalue.
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History

Nowadays, eigenvalues are usually introduced in the context of matrix theory. Historically, however, they arose in

the study of quadratic forms and differential equations.

In the first half of the 18th century, Johann and Daniel Bernoulli, d'Alembert, and Euler encountered eigenvalue

problems when studying the motion of a rope, which they considered to be a weightless string loaded with a number

of masses. Laplace and Lagrange continued their work in the second half of the century. They realized that the

eigenvalues are related to the stability of the motion. They also used eigenvalue method in their study of the solar

system.
[2]

Euler had also studied the rotational motion of a rigid body and discovered the importance of the principal axes. As

Lagrange realized, the principal axes are the eigenvectors of the inertia matrix.
[3]

 In the early 19th century, Cauchy

saw how their work could be used to classify the quadric surfaces, and generalized it to arbitrary dimensions.
[4]

Cauchy also coined the term racine caractéristique (characteristic root) for what is now called eigenvalue; his term

survives in characteristic equation.
[5]

Fourier used the work of Laplace and Lagrange to solve the heat equation by separation of variables in his famous

1822 book Théorie analytique de la chaleur.
[6]

 Sturm developed Fourier's ideas further and he brought them to the

attention of Cauchy, who combined them with his own ideas and arrived at the fact that symmetric matrices have

real eigenvalues.
[4]

 This was extended by Hermite in 1855 to what are now called Hermitian matrices.
[5]

 Around the

same time, Brioschi proved that the eigenvalues of orthogonal matrices lie on the unit circle,
[4]

 and Clebsch found

the corresponding result for skew-symmetric matrices.
[5]

 Finally, Weierstrass clarified an important aspect in the
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stability theory started by Laplace by realizing that defective matrices can cause instability.
[4]

In the meantime, Liouville had studied similar eigenvalue problems as Sturm; the discipline that grew out of their

work is now called Sturm-Liouville theory.
[7]

 Schwarz studied the first eigenvalue of Laplace's equation on general

domains towards the end of the 19th century, while Poincaré studied Poisson's equation a few years later.
[8]

At the start of the 20th century, Hilbert studied the eigenvalues of integral operators by considering them to be

infinite matrices.
[9]

 He was the first to use the German word eigen to denote eigenvalues and eigenvectors in 1904,

though he may have been following a related usage by Helmholtz. "Eigen" can be translated as "own", "peculiar to",

"characteristic" or "individual"—emphasizing how important eigenvalues are to defining the unique nature of a

specific transformation. For some time, the standard term in English was "proper value", but the more distinctive

term "eigenvalue" is standard today.
[10]

The first numerical algorithm for computing eigenvalues and eigenvectors appeared in 1929, when Von Mises

published the power method. One of the most popular methods today, the QR algorithm, was proposed

independently by Francis and Kublanovskaya in 1961.
[11]

Definitions

See also: Eigenplane

Transformations of space—such as translation (or shifting the origin), rotation, reflection, stretching, compression,

or any combination of these—may be visualized by the effect they produce on vectors. Vectors can be visualised as

arrows pointing from one point to another.

Eigenvectors of transformations are vectors
[12]

 which are either left unaffected or simply multiplied by a

scale factor after the transformation.

An eigenvector's eigenvalue is the scale factor by which it has been multiplied.

An eigenspace is a space consisting of all eigenvectors which have the same eigenvalue, along with the zero

(null) vector, which itself is not an eigenvector.

The principal eigenvector of a transformation is the eigenvector with the largest corresponding eigenvalue.

The geometric multiplicity of an eigenvalue is the dimension of the associated eigenspace.

The spectrum of a transformation on finite dimensional vector spaces is the set of all its eigenvalues.

For instance, an eigenvector of a rotation in three dimensions is a vector located within the axis about which the

rotation is performed. The corresponding eigenvalue is 1 and the corresponding eigenspace contains all the vectors

along the axis. As this is a one-dimensional space, its geometric multiplicity is one. This is the only eigenvalue of the

spectrum (of this rotation) that is a real number.

Examples

As the Earth rotates, every arrow pointing outward from the center of the Earth also rotates, except those arrows

that lie on the axis of rotation. Consider the transformation of the Earth after one hour of rotation: An arrow from the

center of the Earth to the Geographic South Pole would be an eigenvector of this transformation, but an arrow from

the center of the Earth to anywhere on the equator would not be an eigenvector. Since the arrow pointing at the

pole is not stretched by the rotation of the Earth, its eigenvalue is 1.

Another example is provided by a thin metal sheet expanding uniformly about a fixed point in such a way that the

distances from any point of the sheet to the fixed point are doubled. This expansion is a transformation with

eigenvalue 2. Every vector from the fixed point to a point on the sheet is an eigenvector, and the eigenspace is the

set of all these vectors.
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However, three-dimensional geometric space is not the only vector

space. For example, consider a stressed rope fixed at both ends, like

the vibrating strings of a string instrument (Fig. 2). The distances of

atoms of the vibrating rope from their positions when the rope is at

rest can be seen as the components of a vector in a space with as

many dimensions as there are atoms in the rope.

Assume the rope is a continuous medium. If one considers the

equation for the acceleration at every point of the rope, its

eigenvectors, or eigenfunctions, are the standing waves. The

standing waves correspond to particular oscillations of the rope such

that the acceleration of the rope is simply its shape scaled by a

factor—this factor, the eigenvalue, turns out to be − ω
2
 where ω is the angular frequency of the oscillation. Each

component of the vector associated with the rope is multiplied by a time-dependent factor sin(ωt). If damping is

considered, the amplitude of this oscillation decreases until the rope stops oscillating, corresponding to a complex

ω. One can then associate a lifetime with the imaginary part of ω, and relate the concept of an eigenvector to the

concept of resonance. Without damping, the fact that the acceleration operator (assuming a uniform density) is

Hermitian leads to several important properties, such as that the standing wave patterns are orthogonal functions.

Eigenvalue equation

Mathematically, vλ is an eigenvector and λ the corresponding eigenvalue of a transformation T if the equation:

is true, whereT(vλ) is the vector obtained when applying the transformation T to vλ.

Suppose T is a linear transformation (which means that  for all scalars a, b,

and vectors v, w). Consider a basis in that vector space. Then, T and vλ can be represented relative to that basis by

a matrix AT—a two-dimensional array—and respectively a column vector vλ—a one-dimensional vertical array. The

eigenvalue equation in its matrix representation is written

where the juxtaposition is matrix multiplication. Since in this circumstance the transformation T and its matrix

representation AT are equivalent, we can often use just T for the matrix representation and the transformation. This

is equivalent to a set of n linear equations, where n is the number of basis vectors in the basis set. In this equation

both the eigenvalue λ and the n components of vλ are unknowns.

However, it is sometimes unnatural or even impossible to write down the eigenvalue equation in a matrix form. This

occurs for instance when the vector space is infinite dimensional, for example, in the case of the rope above.

Depending on the nature of the transformation T and the space to which it applies, it can be advantageous to

represent the eigenvalue equation as a set of differential equations. If T is a differential operator, the eigenvectors

are commonly called eigenfunctions of the differential operator representing T. For example, differentiation itself is

a linear transformation since

(f(t) and g(t) are differentiable functions, and a and b are constants).

Consider differentiation with respect to t. Its eigenfunctions h(t) obey the eigenvalue equation:

Fig. 2. A standing wave in a rope fixed at its

boundaries is an example of an eigenvector, or

more precisely, an eigenfunction of the

transformation giving the acceleration. As time

passes, the standing wave is scaled by a

sinusoidal oscillation whose frequency is

determined by the eigenvalue, but its overall

shape is not modified.
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,

where λ is the eigenvalue associated with the function. Such a function of time is constant if λ = 0, grows

proportionally to itself if λ is positive, and decays proportionally to itself if λ is negative. For example, an idealized

population of rabbits breeds faster the more rabbits there are, and thus satisfies the equation with a positive

lambda.

The solution to the eigenvalue equation is g(t) = exp(λt), the exponential function; thus that function is an

eigenfunction of the differential operator d/dt with the eigenvalue λ. If λ is negative, we call the evolution of g an

exponential decay; if it is positive, an exponential growth. The value of λ can be any complex number. The spectrum

of d/dt is therefore the whole complex plane. In this example the vector space in which the operator d/dt acts is the

space of the differentiable functions of one variable. This space has an infinite dimension (because it is not possible

to express every differentiable function as a linear combination of a finite number of basis functions). However, the

eigenspace associated with any given eigenvalue λ is one dimensional. It is the set of all functions g(t) = Aexp(λt),

where A is an arbitrary constant, the initial population at t=0.

Spectral theorem

For more details on this topic, see spectral theorem.

According to the spectral theorem, the eigenvalues and eigenvectors characterize a linear transformation in a

unique way. In its simplest version, the spectral theorem states that, under precise conditions, a linear

transformation of a vector  can be expressed as the linear combination of the eigenvectors. The coefficients

characterizing the linear combination are equal to the eigenvalues times the scalar product (or dot product) of the

eigenvectors with the vector . Mathematically, it can be written as:

where  and  stand for the eigenvectors and eigenvalues of . The simplest case in which

the theorem is valid is the case where the linear transformation is given by a real symmetric matrix or complex

Hermitian matrix; more generally the theorem holds for all normal matrices.

If one defines the nth power of a transformation as the result of applying it n times in succession, one can also

define polynomials of transformations. A more general version of the theorem is that any polynomial P of  is

equal to:

The theorem can be extended to other functions of transformations like analytic functions, the most general case

being Borel functions.

Eigenvalues and eigenvectors of matrices

Computing eigenvalues and eigenvectors of matrices

Suppose that we want to compute the eigenvalues of a given matrix. If the matrix is small, we can compute them

symbolically using the characteristic polynomial. However, this is often impossible for larger matrices, in which case

we must use a numerical method.

Symbolic computations

For more details on this topic, see symbolic computation of matrix eigenvalues.
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Finding eigenvalues

An important tool for describing eigenvalues of square matrices is the characteristic polynomial: saying that λ is an

eigenvalue of A is equivalent to stating that the system of linear equations (A – λI) v = 0 (where I is the identity

matrix) has a non-zero solution v (an eigenvector), and so it is equivalent to the determinant:

The function p(λ) = det(A – λI) is a polynomial in λ since determinants are defined as sums of products. This is the

characteristic polynomial of A: the eigenvalues of a matrix are the zeros of its characteristic polynomial.

All the eigenvalues of a matrix A can be computed by solving the equation pA(λ) = 0. If A is an n×n matrix, then pA

has degree n and A can therefore have at most n eigenvalues. Conversely, the fundamental theorem of algebra

says that this equation has exactly n roots (zeroes), counted with multiplicity. All real polynomials of odd degree

have a real number as a root, so for odd n, every real matrix has at least one real eigenvalue. In the case of a real

matrix, for even and odd n, the non-real eigenvalues come in conjugate pairs.

Finding eigenvectors

Once the eigenvalues λ are known, the eigenvectors can then be found by solving:

where v is in the null space of A − λI

An example of a matrix with no real eigenvalues is the 90-degree clockwise rotation:

whose characteristic polynomial is λ
2
 + 1 and so its eigenvalues are the pair of complex conjugates i, -i. The

associated eigenvectors are also not real.

Numerical computations

For more details on this topic, see eigenvalue algorithm.

In practice, eigenvalues of large matrices are not computed using the characteristic polynomial. Computing the

polynomial becomes expensive in itself, and exact (symbolic) roots of a high-degree polynomial can be difficult to

compute and express: the Abel–Ruffini theorem implies that the roots of high-degree (5 and above) polynomials

cannot be expressed simply using nth roots. Effective numerical algorithms for approximating roots of polynomials

exist, but small errors in the eigenvalues can lead to large errors in the eigenvectors. Therefore, general algorithms

to find eigenvectors and eigenvalues, are iterative. The easiest method is the power method: a random vector v is

chosen and a sequence of unit vectors is computed as

, , , ...

This sequence will almost always converge to an eigenvector corresponding to the eigenvalue of greatest

magnitude. This algorithm is easy, but not very useful by itself. However, popular methods such as the QR

algorithm are based on it.

Properties
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Algebraic multiplicity

The algebraic multiplicity of an eigenvalue λ of A is the order of λ as a zero of the characteristic polynomial of A;

in other words, if λ is one root of the polynomial, it is the number of factors ( t − λ) in the characteristic polynomial

after factorization. An n×n matrix has n eigenvalues, counted according to their algebraic multiplicity, because its

characteristic polynomial has degree n.

An eigenvalue of algebraic multiplicity 1 is called a "simple eigenvalue".

In an article on matrix theory, a statement like the one below might be encountered:

"the eigenvalues of a matrix A are 4,4,3,3,3,2,2,1,"

meaning that the algebraic multiplicity of 4 is two, of 3 is three, of 2 is two and of 1 is one. This style is used

because algebraic multiplicity is the key to many mathematical proofs in matrix theory.

Recall that above we defined the geometric multiplicity of an eigenvector to be the dimension of the associated

eigenspace, the nullspace of λI − A. The algebraic multiplicity can also be thought of as a dimension: it is the

dimension of the associated generalized eigenspace (1st sense), which is the nullspace of the matrix (λI − A)
k
 for

any sufficiently large k. That is, it is the space of generalized eigenvectors (1st sense), where a generalized

eigenvector is any vector which eventually becomes 0 if λI − A is applied to it enough times successively. Any

eigenvector is a generalized eigenvector, and so each eigenspace is contained in the associated generalized

eigenspace. This provides an easy proof that the geometric multiplicity is always less than or equal to the algebraic

multiplicity. The first sense should not to be confused with generalized eigenvalue problem as stated below.

For example:

It has only one eigenvalue, namely λ = 1. The characteristic polynomial is (λ − 1)
2
, so this eigenvalue has algebraic

multiplicity 2. However, the associated eigenspace is the axis usually called the x axis, spanned by the unit vector

, so the geometric multiplicity is only 1.

Generalized eigenvectors can be used to calculate the Jordan normal form of a matrix (see discussion below). The

fact that Jordan blocks in general are not diagonal but nilpotent is directly related to the distinction between

eigenvectors and generalized eigenvectors.

Decomposition theorems for general matrices

The decomposition theorem is a version of the spectral theorem in the particular case of matrices. This theorem is

usually introduced in terms of coordinate transformation. If U is an invertible matrix, it can be seen as a

transformation from one coordinate system to another, with the columns of U being the components of the new

basis vectors within the old basis set. In this new system the coordinates of the vector v are labeled v'. The latter are

obtained from the coordinates v in the original coordinate system by the relation v' = Uv and, the other way around,

we have v = U 
− 1

v'. Applying successively v' = Uv, w' = Uw and U 
− 1

U = I, to the relation Av = w defining the matrix

multiplication provides A'v' = w' with A' = UAU 
− 1

, the representation of A in the new basis. In this situation, the

matrices A and A' are said to be similar.

The decomposition theorem states that, if one chooses as columns of U 
− 1

 n linearly independent eigenvectors of
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A, the new matrix A' = UAU 
− 1

 is diagonal and its diagonal elements are the eigenvalues of A. If this is possible the

matrix A is diagonalizable. An example of non-diagonalizable matrix is given by the matrix A above. There are

several generalizations of this decomposition which can cope with the non-diagonalizable case, suited for different

purposes:

the Schur triangular form states that any matrix is unitarily equivalent to an upper triangular one;

the singular value decomposition, A = UΣV 
*
 where Σ is diagonal with U and V unitary matrices. The diagonal

entries of A = UΣV 
*
 are nonnegative; they are called the singular values of A. This can be done for

non-square matrices as well;

the Jordan normal form, where A = XΛX 
− 1

 where Λ is not diagonal but block-diagonal. The number and the

sizes of the Jordan blocks are dictated by the geometric and algebraic multiplicities of the eigenvalues. The

Jordan decomposition is a fundamental result. One might glean from it immediately that a square matrix is

described completely by its eigenvalues, including multiplicity, up to similarity. This shows mathematically the

important role played by eigenvalues in the study of matrices;

as an immediate consequence of Jordan decomposition, any matrix A can be written uniquely as A = S + N

where S is diagonalizable, N is nilpotent (i.e., such that N
q
=0 for some q), and S commutes with N (SN=NS).

Some other properties of eigenvalues

The spectrum is invariant under similarity transformations: the matrices A and P
-1

AP have the same eigenvalues for

any matrix A and any invertible matrix P. The spectrum is also invariant under transposition: the matrices A and A
T

have the same eigenvalues.

Since a linear transformation on finite dimensional spaces is bijective iff it is injective, a matrix is invertible if and

only if zero is not an eigenvalue of the matrix.

Some more consequences of the Jordan decomposition are as follows:

a matrix is diagonalizable if and only if the algebraic and geometric multiplicities coincide for all its

eigenvalues. In particular, an n×n matrix which has n different eigenvalues is always diagonalizable;

the vector space on which the matrix acts can be viewed as a direct sum of its invariant subspaces span by its

generalized eigenvectors. Each block on the diagonal corresponds to a subspace in the direct sum. When a

block is diagonal, its invariant subspace is an eigenspace. Otherwise it is a generalized eigenspace, defined

above;

Since the trace, or the sum of the elements on the main diagonal of a matrix, is preserved by unitary

equivalence, the Jordan normal form tells us that it is equal to the sum of the eigenvalues;

Similarly, because the eigenvalues of a triangular matrix are the entries on the main diagonal, the determinant

equals the product of the eigenvalues (counted according to algebraic multiplicity).

The location of the spectrum for a few subclasses of normal matrices are:

All eigenvalues of a Hermitian matrix (A = A
*
) are real. Furthermore, all eigenvalues of a positive-definite

matrix (v
*
Av > 0 for all vectors v) are positive;

All eigenvalues of a skew-Hermitian matrix (A = −A
*
) are purely imaginary;

All eigenvalues of a unitary matrix (A
-1

 = A
*
) have absolute value one;

Suppose that A is an m×n matrix, with m ≤ n, and that B is an n×m matrix. Then BA has the same eigenvalues as

AB plus n − m eigenvalues equal to zero.

Each matrix can be assigned an operator norm, which depends on the norm of its domain. The operator norm of a
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square matrix is an upper bound for the moduli of its eigenvalues, and thus also for its spectral radius. This norm is

directly related to the power method for calculating the eigenvalue of largest modulus given above. For normal

matrices, the operator norm induced by the Euclidean norm is the largest moduli among its eigenvalues.

Conjugate eigenvector

A conjugate eigenvector or coneigenvector is a vector sent after transformation to a scalar multiple of its

conjugate, where the scalar is called the conjugate eigenvalue or coneigenvalue of the linear transformation. The

coneigenvectors and coneigenvalues represent essentially the same information and meaning as the regular

eigenvectors and eigenvalues, but arise when an alternative coordinate system is used. The corresponding

equation is

For example, in coherent electromagnetic scattering theory, the linear transformation A represents the action

performed by the scattering object, and the eigenvectors represent polarization states of the electromagnetic wave.

In optics, the coordinate system is defined from the wave's viewpoint, known as the Forward Scattering Alignment

(FSA), and gives rise to a regular eigenvalue equation, whereas in radar, the coordinate system is defined from the

radar's viewpoint, known as the Back Scattering Alignment (BSA), and gives rise to a coneigenvalue equation.

Generalized eigenvalue problem

A generalized eigenvalue problem (2nd sense) is of the form

where A and B are matrices. The generalized eigenvalues (2nd sense) λ can be obtained by solving the equation

The set of matrices of the form A − λB, where λ is a complex number, is called a pencil. If B is invertible, then the

original problem can be written in the form

which is a standard eigenvalue problem. However, in most situations it is preferable not to perform the inversion,

and solve the generalized eigenvalue problem as stated originally.

An example is provided by the molecular orbital application below.

Entries from a ring

In the case of a square matrix A with entries in a ring, λ is called a right eigenvalue if there exists a nonzero

column vector x such that Ax=λx, or a left eigenvalue if there exists a nonzero row vector y such that yA=yλ.

If the ring is commutative, the left eigenvalues are equal to the right eigenvalues and are just called eigenvalues. If

not, for instance if the ring is the set of quaternions, they may be different.

Infinite-dimensional spaces
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If the vector space is infinite dimensional, the notion of eigenvalues can be

generalized to the concept of spectrum. The spectrum is the set of scalars λ

for which, , is not defined; that is, such that T − λ has no

bounded inverse.

Clearly if λ is an eigenvalue of T, λ is in the spectrum of T. In general, the

converse is not true. There are operators on Hilbert or Banach spaces

which have no eigenvectors at all. This can be seen in the following

example. The bilateral shift on the Hilbert space  (the space of all

sequences of scalars  such that

 converges) has no

eigenvalue but has spectral values.

In infinite-dimensional spaces, the spectrum of a bounded operator is

always nonempty. This is also true for an unbounded self adjoint operator.

Via its spectral measures, the spectrum of any self adjoint operator,

bounded or otherwise, can be decomposed into absolutely continuous, pure

point, and singular parts. (See Decomposition of spectrum.)

The exponential growth or decay provides an example of a continuous

spectrum, as does the vibrating string example illustrated above. The

hydrogen atom is an example where both types of spectra appear. The

bound states of the hydrogen atom correspond to the discrete part of the

spectrum while the ionization processes are described by the continuous

part. Fig. 3 exemplifies this concept in the case of the Chlorine atom.

Applications

Schrödinger equation

Fig. 3.Absorption spectrum (cross

section) of atomic Chlorine. The sharp

lines obtained in theory correspond to

the discrete spectrum (Rydberg series)

of the Hamiltonian; the broad structure

on the right is associated with the

continuous spectrum (ionization). The

corresponding experimental results

have been obtained by measuring the

intensity of X-rays absorbed by a gas of

atoms as a function of the incident

photon energy in eV.
[13]
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An example of an eigenvalue equation where the transformation  is

represented in terms of a differential operator is the time-independent

Schrödinger equation in quantum mechanics:

where H, the Hamiltonian, is a second-order differential operator and

ΨE, the wavefunction, is one of its eigenfunctions corresponding to

the eigenvalue E, interpreted as its energy.

However, in the case where one is interested only in the bound state

solutions of the Schrödinger equation, one looks for ΨE within the

space of square integrable functions. Since this space is a Hilbert

space with a well-defined scalar product, one can introduce a basis

set in which ΨE and H can be represented as a one-dimensional

array and a matrix respectively. This allows one to represent the

Schrödinger equation in a matrix form. (Fig. 4 presents the lowest

eigenfunctions of the Hydrogen atom Hamiltonian.)

The Dirac notation is often used in this context. A vector, which

represents a state of the system, in the Hilbert space of square

integrable functions is represented by . In this notation, the

Schrödinger equation is:

where  is an eigenstate of H. It is a self adjoint operator, the

infinite dimensional analog of Hermitian matrices (see Observable).

As in the matrix case, in the equation above  is understood to be the vector obtained by application of the

transformation H to .

Molecular orbitals

In quantum mechanics, and in particular in atomic and molecular physics, within the Hartree-Fock theory, the atomic

and molecular orbitals can be defined by the eigenvectors of the Fock operator. The corresponding eigenvalues are

interpreted as ionization potentials via Koopmans' theorem. In this case, the term eigenvector is used in a

somewhat more general meaning, since the Fock operator is explicitly dependent on the orbitals and their

eigenvalues. If one wants to underline this aspect one speaks of implicit eigenvalue equation. Such equations are

usually solved by an iteration procedure, called in this case self-consistent field method. In quantum chemistry, one

often represents the Hartree-Fock equation in a non-orthogonal basis set. This particular representation is a

generalized eigenvalue problem called Roothaan equations.

Factor analysis

In factor analysis, the eigenvectors of a covariance matrix correspond to factors, and eigenvalues to factor loadings.

Factor analysis is a statistical technique used in the social sciences and in marketing, product management,

operations research, and other applied sciences that deal with large quantities of data. The objective is to explain

most of the variability among a number of observable random variables in terms of a smaller number of

unobservable random variables called factors. The observable random variables are modeled as linear

combinations of the factors, plus "error" terms.

Fig. 4. The wavefunctions associated with the

bound states of an electron in a hydrogen atom

can be seen as the eigenvectors of the

hydrogen atom Hamiltonian as well as of the

angular momentum operator. They are

associated with eigenvalues interpreted as

their energies (increasing downward:

n=1,2,3,...) and angular momentum (increasing

across: s, p, d,...). The illustration shows the

square of the absolute value of the

wavefunctions. Brighter areas correspond to

higher probability density for a position

measurement. The center of each figure is the

atomic nucleus, a proton.
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Eigenfaces

In image processing, processed images of faces can be seen as vectors whose

components are the brightnesses of each pixel. The dimension of this vector

space is the number of pixels. The eigenvectors of the covariance matrix

associated to a large set of normalized pictures of faces are called eigenfaces.

They are very useful for expressing any face image as a linear combination of

some of them. Eigenfaces provide a means of applying data compression to

faces for identification purposes.

Tensor of inertia

In mechanics, the eigenvectors of the inertia tensor define the principal axes of a

rigid body. The tensor of inertia is a key quantity required in order to determine

the rotation of a rigid body around its center of mass.

Stress tensor

In solid mechanics, the stress tensor is symmetric and so can be decomposed into a diagonal tensor with the

eigenvalues on the diagonal and eigenvectors as a basis. Because it is diagonal, in this orientation, the stress

tensor has no shear components; the components it does have are the principal components.

Eigenvalues of a graph

In spectral graph theory, an eigenvalue of a graph is defined as an eigenvalue of the graph's adjacency matrix A, or

(increasingly) of the graph's Laplacian matrix I − T 
− 1 / 2

AT 
− 1 / 2

, where T is a diagonal matrix holding the degree

of each vertex, and in T 
− 1 / 2

, 0 is substituted for 0 
− 1 / 2

. The principal eigenvector of a graph is used to measure

the centrality of its vertices. An example is Google's PageRank algorithm. The principal eigenvector of a modified

adjacency matrix of the www-graph gives the page ranks as its components. The two eigenvectors with largest

positive eigenvalues can also be used as x- and y-coordinates of vertices in drawing the graph via spectral layout

methods.

Notes

^ In this context, only linear transformations from a vector space to itself are considered.1.

^ See Hawkins (1975), §2; Kline (1972), pp. 807+808.2.

^ See Hawkins (1975), §2.3.

^ 
a
 
b
 
c
 
d
 See Hawkins (1975), §3.4.

^ 
a
 
b
 
c
 See Kline (1972), pp. 807+808.5.

^ See Kline (1972), p. 673.6.

^ See Kline (1972), pp. 715+716.7.

^ See Kline (1972), pp. 706+707.8.

^ See Kline (1972), p. 1063.9.

^ See Aldrich (2006).10.

^ See Golub and Van Loan (1996), §7.3; Meyer (2000), §7.3.11.

^ Since all linear transformations leave the zero vector unchanged, it is not considered an eigenvector.12.

^ T. W Gorczyca, Auger Decay of the Photoexcited Inner Shell Rydberg Series in Neon, Chlorine, and Argon,

Abstracts of the 18th International Conference on X-ray and Inner-Shell Processes, Chicago, August 23-27

(1999).

13.
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