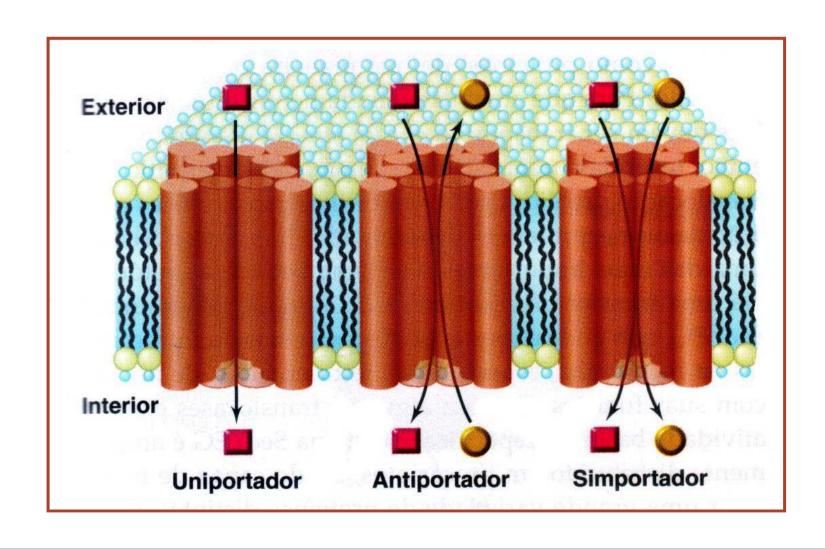


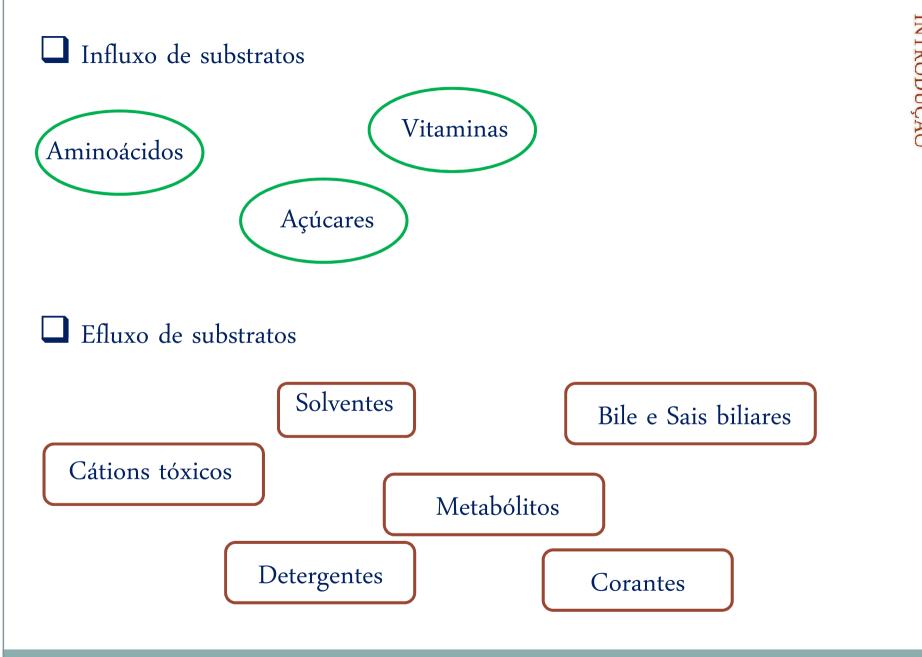
BMM 5753 – Bacteriologia de Anaeróbios

BOMBAS DE EFLUXO

MSc. Aline Ignacio

2016

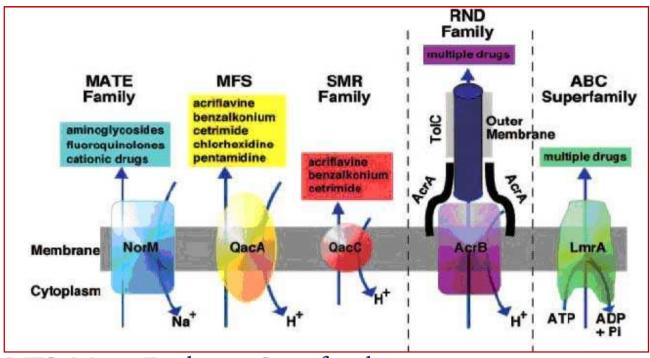

INTRODUÇÃO


☐ Proteínas transmembrânicas que atuam como transportadores —

Procariotos e Eucariotos

- Afinidade por um único substrato ou vários
- Energia:
- hidrólise do ATP
- gradiente (H⁺, Na⁺)

Transportadores transmembrânicos e tipos de transporte


Importância

- Homeostase
- Detoxificação
- Comunicação celular Quorum sensing
- ☐ Virulência (?)

Resistência múltipla aos antibióticos

(Multidrug efflux – MDR)

CARACTERIZAÇÃO

MFS: Major Facilitator Superfamily

ABC: ATP Binding Cassette

SMR*: Small Multidrug Resistance

RND*: Resistance Nodulation Division

MATE*: Multidrug and Toxic Compound Extrusion

* Exclusiva em procariotos

(Piddock, 2006)

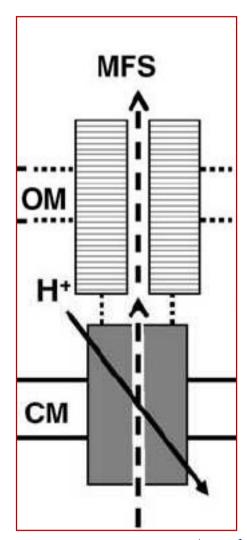
CARACTERIZAÇÃO

Família MFS

Major Facilitator Superfamily

Procariotos e Eucariotos

gram-positivas


gram-negativas (MFS+Canal ME)

Força próton motiva (H⁺)

Açúcares, metabólitos intermediários e drogas (tetraciclinas, cloranfenicol e fluoroquinolonas)

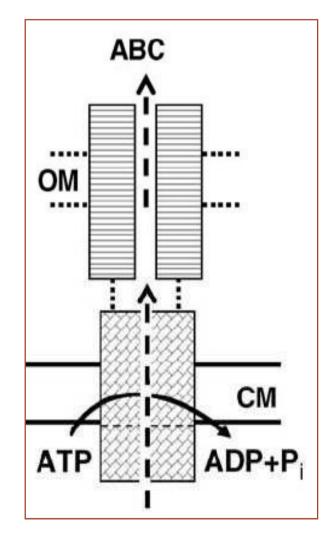
S. aureus (NorB) e B. subtilis (LmrB)

E. coli (EmrAB-TolC/EmrKY-TolC)

Superfamília ABC

ATP Binding Cassette

Procariotos e Eucariotos


Humanos – agentes tumorais

Hidrólise do ATP

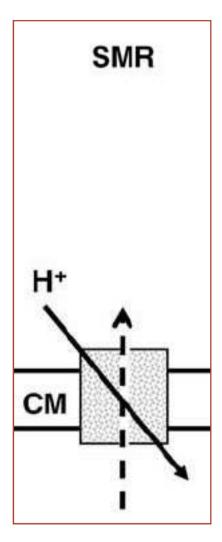
Açúcares, aa, cátions e drogas (macrolídeos, cloranfenicol, tetraciclinas e fluoroquinolonas)

L. lactis (LmrCD) e S. aureus (AbcA)

E. coli (MacAB-TolC)

Família SMR

Small Multidrug Resistance


Menor sistema de efluxo

Transporta drogas catiônicas

(macrolídeos e tetraciclinas)

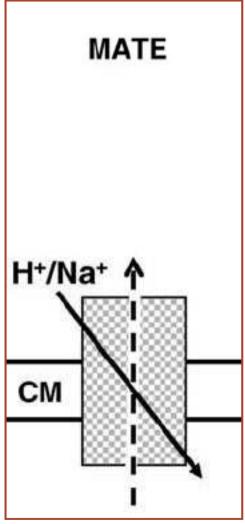
Efluxo realizado por força próton motiva

S. aureus (SepA)

Família MATE

Multidrug and Toxic Compound Extrusion

Topologia similar MFS


Efluxo realizado por força próton

motiva e gradiente de íons sódio

Transporta detergentes e drogas

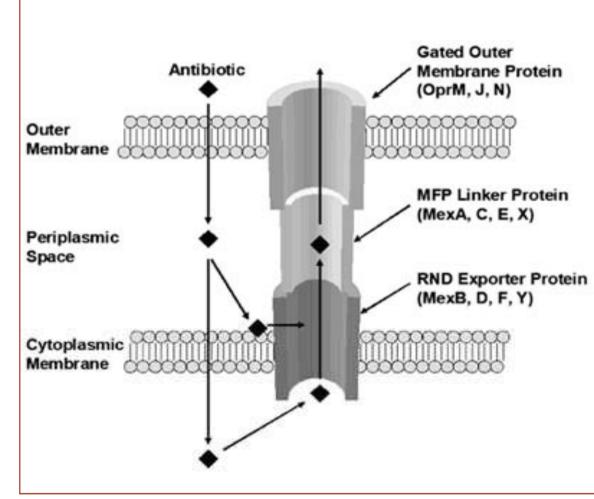
(aminoglicosídeos e fluoroquinolonas)

S. aureus (MepA) e H. influenza (HmrM)

Família RND

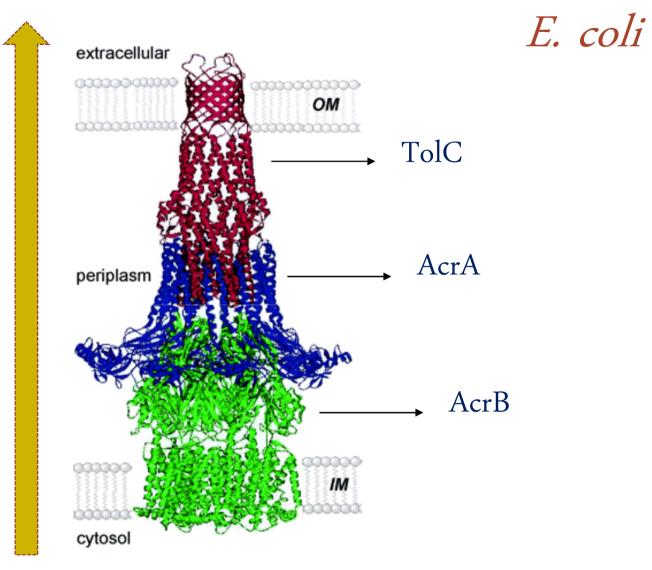
Resistance Nodulation Division

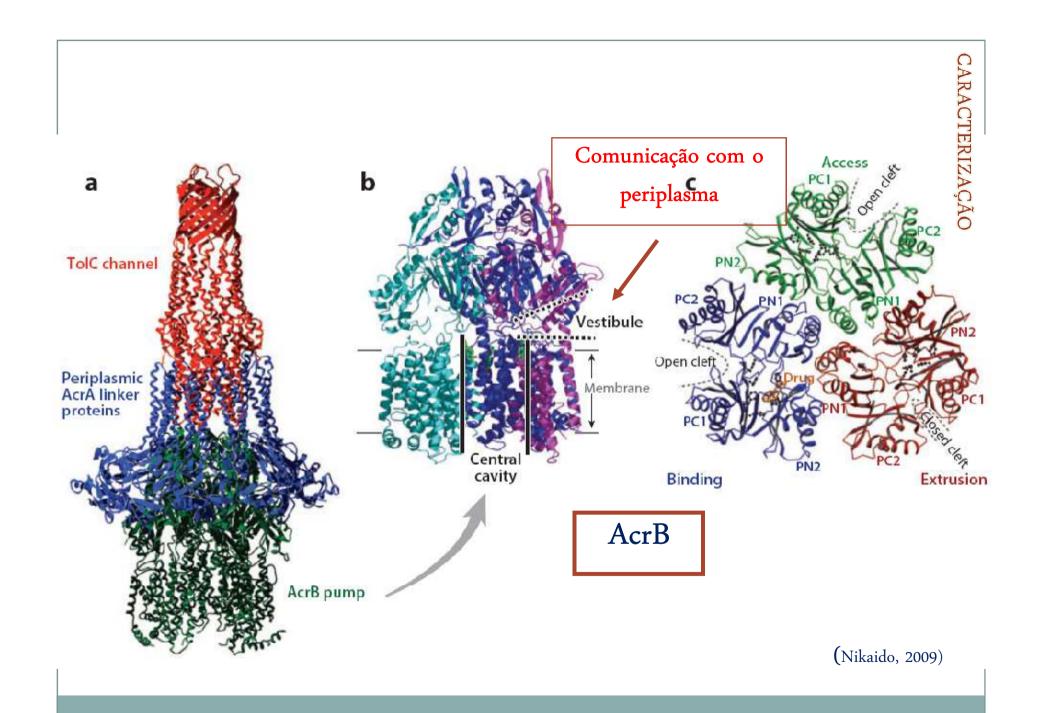
Gradiente de prótons


Transporta moléculas lipofílicas e anfifílicas

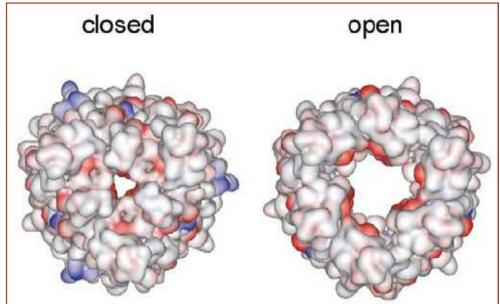
Responsável pela tolerância de bactérias a solventes

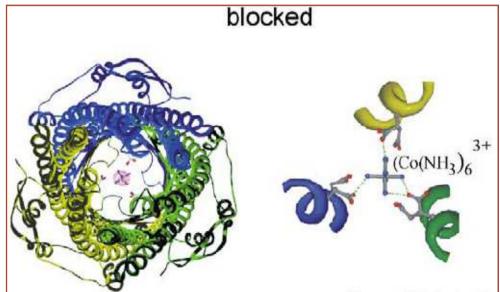
Aminoglicosídeos, fluoroquinolonas, macrolídeos, tetraciclinas e β -lactâmicos


A bomba está divida em três partes




P. aeruginosa


Cada um dos três componentes é essencial para o efluxo da droga e a ausência de um deles pode comprometer todo o funcionamento do complexo.



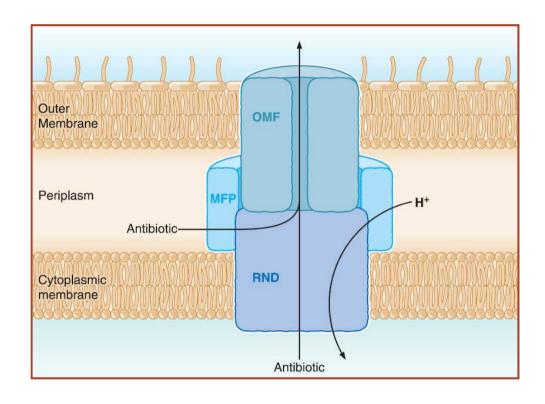
PIDDOCK (2006)

(Eswaran et al., 2004)

K. pneumoniae

P. aeruginosa

(AcrABR)


(MexAB-OprM)

E. coli

(AcrAB-TolC)

P. aeruginosa

(MexXY-OprM)

A. baumannii

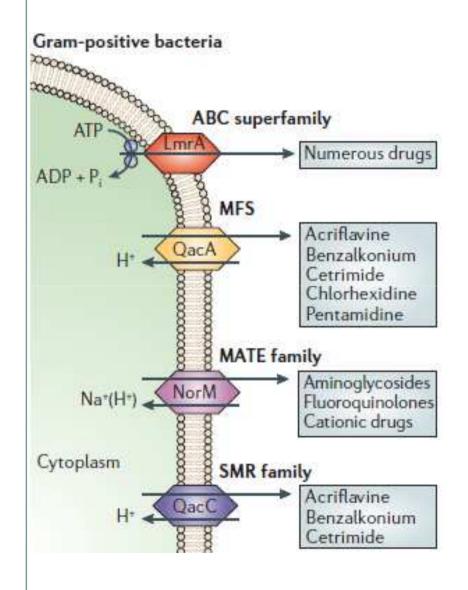
(AdeIJK)

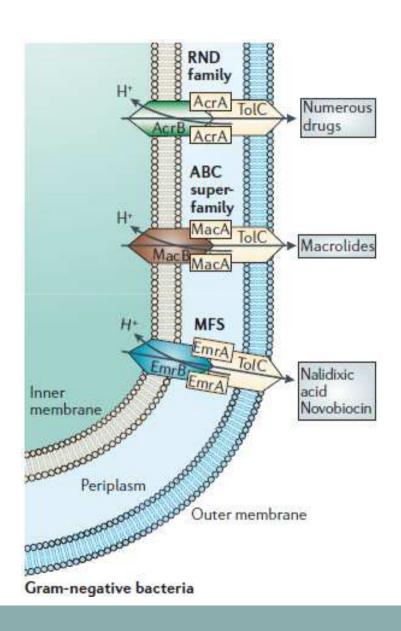
P. aeruginosa

(MexCD-OprJ)

N. gonorrhoeae

(FarAB-MtrE)

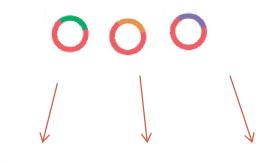

S. enterica sorovar Typhimurium


(AcrAB-TolC)

P. aeruginosa

(MexEF-OprN)

Resistência intrínseca


Como podemos estudar resistência associada às bombas de efluxo?

Pesquisas científicas

Como estudar resistência associada às bombas de efluxo?

- ☐ Genômica e Microarray
- Clonagem e expressão
- Construção de cepas mutantes (mutação pontual ou deleção)
- Complementação do mutante (deleção)
- Perfil de substratos

Journal of Antimicrobial Chemotherapy (2003) 52, 176–179

DOI: 10.1093/jac/dkg308

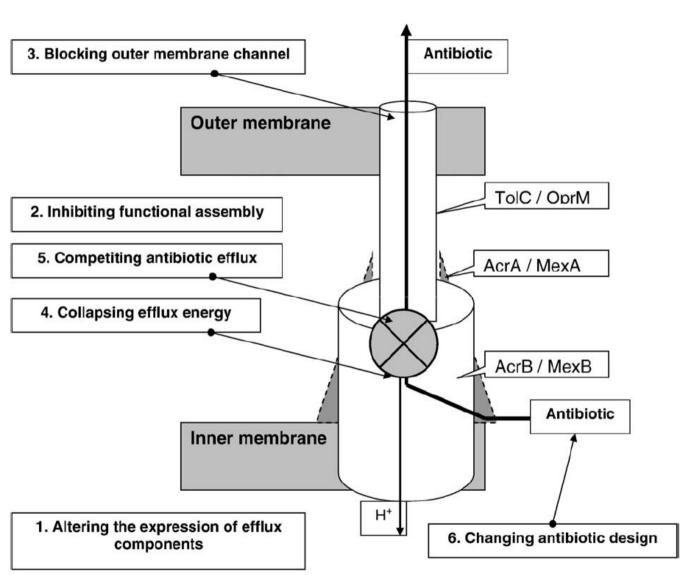
Advance Access publication 1 July 2003

An RND-type multidrug efflux pump SdeXY from Serratia marcescens

Jing Chen, Teruo Kuroda, Md Nazmul Huda, Tohru Mizushima and Tomofusa Tsuchiya*

Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan

pSTV28 – plasmídio/vetor

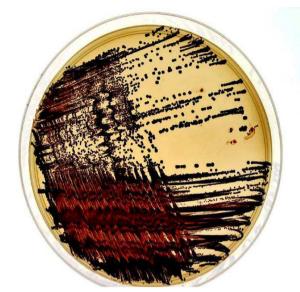

pSEC38: sedXY

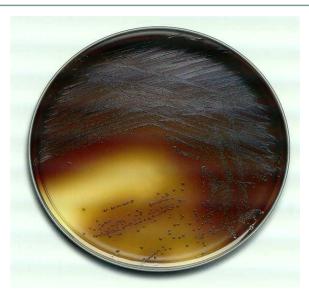
Transformaram: *E. coli* KAM 32 (Δ acrAB)

Table 2. MICs of various antimicrobial agents for *E. coli* KAM32 harbouring pSTV28 (control) or pSEC38 (carrying *sdeXY*)

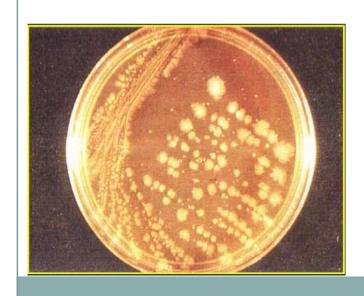
	MIC (mg/L)						
Drug	KAM32/pSTV28	KAM32/pSEC38					
Erythromycin	4	64					
Tetracycline	0.5	2					
Norfloxacin	0.016	0.06					
Ampicillin	8	16					
Streptomycin	2	2					
Benzalkonium chloride	2.5	40					
Chlorhexidine gluconate	1	2.5					
Triclosan	1	4					
Acriflavine	2	64					
Ethidium bromide	4	>128					
Rhodamine 6G	4	128					
Hoechst 33342	0.5	16					

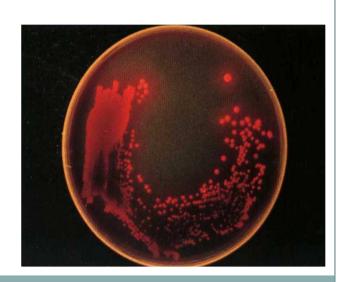
☐ Uso de inibidores


Pagés & Amaral (2009)


Redução da expressão de componentes da bomba

Competem com o antibiótico pelo sítio de ligação na bomba de efluxo


$$H_3COOC$$
 OCH_3
 OC


Causam colapso no sistema de energia da bomba

ANAERÓBIOS

Bombas MATE foram encontradas em *Bacteroides*thetaiotaomicron (Miyamae et al., 2001)

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Dec. 2001, p. 3341–3346 0066-4804/01/\$04.00+0 DOI: 10.1128/AAC.45.12.3341–3346.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved.

Vol. 45, No. 12

A MATE Family Multidrug Efflux Transporter Pumps out Fluoroquinolones in *Bacteroides thetaiotaomicron*

SHIN MIYAMAE,^{1,2,3} OHMI UEDA,² FUMINOBU YOSHIMURA,^{1,2} JAIWEON HWANG,¹† YOSHINOBU TANAKA,³ AND HIROSHI NIKAIDO¹*

Department of Molecular and Cell Biology, University of California, Berkeley, California, and Department of Microbiology² and the First Department of Prosthodontics,³
School of Dentistry, Aichi-Gakuin University, Nagoya, Japan

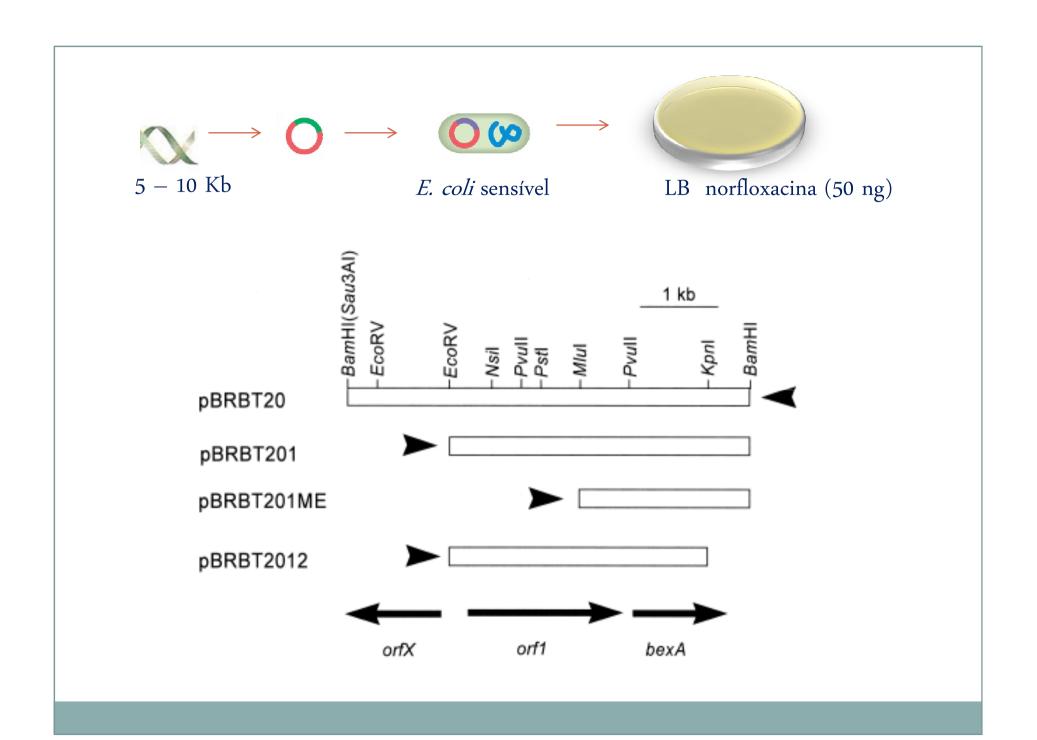


TABLE 1. Antibiotic susceptibilities of various strains*

Prosecutive)	MIC (μg/ml)								
Strain	Norfloxacin	Ciprofloxacin	Sparfloxacin	Ethidium bromide	Chloramphenicol				
E. coli	22222		Ser Million Co.						
$AG102AX^b$	0.03	0.004	0.001	8	1				
AG102AX/pBRBT20	0.25	0.016	0.001	64	1				
AG102AX/pBRBT201	0.25	0.016	0.001	64	1				
AG102AX/pBRBT201ME	0.25	0.016	0.001	64	1				
AG102AX/pBRBT2012	0.03	0.004	0.001	8	1				
AG102AX/pYEB	0.03	0.004	0.001	8	1				
AG102AX/pNEB	0.25	0.016	0.001	64	1				
AG102AX/pNBE	0.03	0.004	0.001	8	1				
$DH5\alpha^b$	0.25	0.06	0.03	64	4				
DH5α/pUC18BT201	1.0	0.25	0.03	512	4				
B. thetaiotaomicron									
ATCC 29741	128	16	2	128	14				
OUT4 (bexA mutant)	32	8	2	32	14				

Bombas MATE foram encontradas em *Clostridium difficile* (Dridi et al., 2004)

MICROBIAL DRUG RESISTANCE Volume 10, Number 3, 2004 © Mary Ann Liebert, Inc.

CdeA of *Clostridium difficile*, a New Multidrug Efflux Transporter of the MATE Family

L. DRIDI, J. TANKOVIC, and J.-C. PETIT

TABLE 2. ANTIBIOTIC SUSCEPTIBILITIES OF E. COLI AG100A AND C. PERFRINGENS 13R

			MICs (mg/L)			
	\(\delta \)		E. coli	100	C. perfr	ingens
Drugs	AG100A/pCDE6	AG100A/pUC18	DH10B/pCDE11	DH10B/pBK-CMV	13R/pCDE3	13R/pKNT19
Norfloxacin	0.03	0.03	0.25	0.03	2	2
Ciprofloxacin	0.006	0.006	0.03	0.003	0.5	0.5
Chloramphenicol	4	4	ND	ND	ND	ND
Tetracyclin	8	8	ND	ND	ND	ND
Erythromycin	16	16	ND	ND	ND	ND
Gentamicin	2	2	ND	ND	ND	ND
Ethidium bromide	128	8	512	8	64	4
Acriflavin	64	4	ND	ND	128	2

Primeira bomba RND foi em *Porphyromonas gingivalis*XepCAB (Ikeda e Yoshimura, 2002)

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Oct. 2002, p. 3257–3260 0066-4804/02/\$04.00+0 DOI: 10.1128/AAC.46.10.3257–3260.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved.

Vol. 46, No. 10

A Resistance-Nodulation-Cell Division Family Xenobiotic Efflux Pump in an Obligate Anaerobe, *Porphyromonas gingivalis*

Takeshi Ikeda^{1,2}* and Fuminobu Yoshimura¹

Department of Microbiology¹ and Research Institute of Advanced Oral Science,² School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan

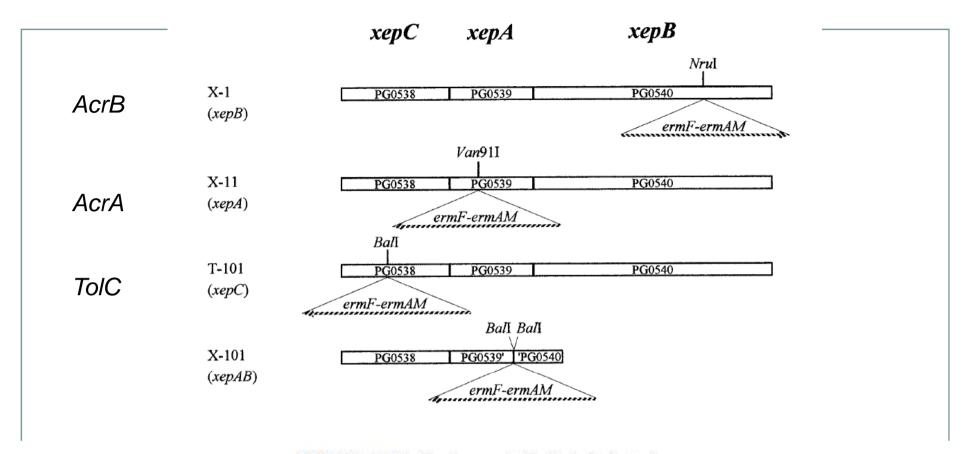


TABLE 2. MICs of various agents for P. gingivalis strains

		MIC (μg/ml) ^a							1			
Strain	Ethidium bromide	Puro- mycin	Rifam- pin	Nor- floxacin	Oflox- acin	Cipro- floxacin	Spar- floxacin	Tetra- cycline	Mino- cycline	Ber- berine	Acri- flavine	SDS
ATCC 33277 (parent) ^b	5	12.5	0.012	4	0.5	1	0.4	0.12	0.05	32	2.5	500
X-1 (xepB)	0.6	3.1	0.003	2	0.25	0.5	0.4	0.06	0.025	16	1.25	125
$X-11$ $(xepA)^c$	0.6	3.1	0.003	2	0.25	0.5	0.4	0.06	0.025	16	1.25	125
T-101 (xepC)	0.6	3.1	0.003	2	0.5	1	0.2	0.12	0.05	16	1.25	125

Primeiro relato de bombas RND em *B. fragilis* foi em 2005 (Ueda et al.)

Antimicrobial Agents and Chemotherapy, July 2005, p. 2807–2815 0066-4804/05/\$08.00+0 doi:10.1128/AAC.49.7.2807–2815.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved.

Vol. 49, No. 7

Sixteen Homologs of the Mex-Type Multidrug Resistance Efflux Pump in *Bacteroides fragilis*

Ohmi Ueda,^{1*} Hannah M. Wexler,² Kaname Hirai,¹ Yukinaga Shibata,³ Fuminobu Yoshimura,⁴ and Setsuo Fujimura¹

Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Japan¹; Department of Wadsworth Anaerobe Laboratory, GLAVAHCS, and Department of Medicine, UCLA School of Medicine, Los Angeles, California²; Department of Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan³; and Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan⁴

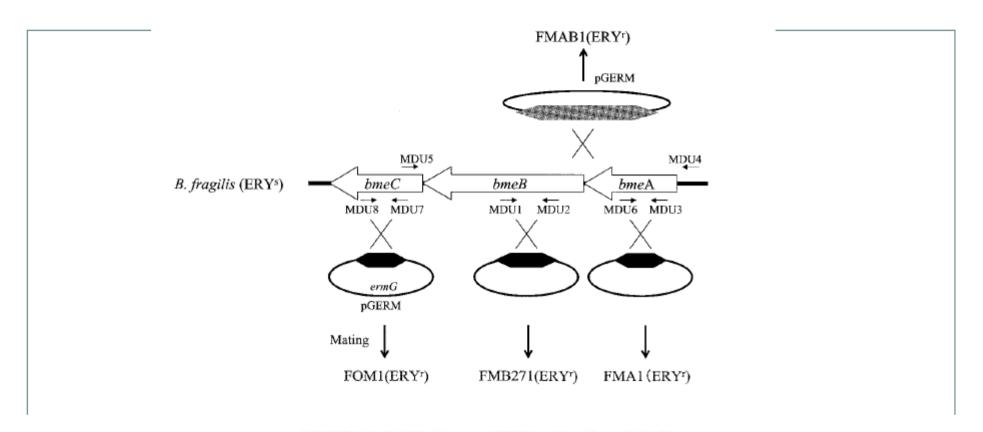
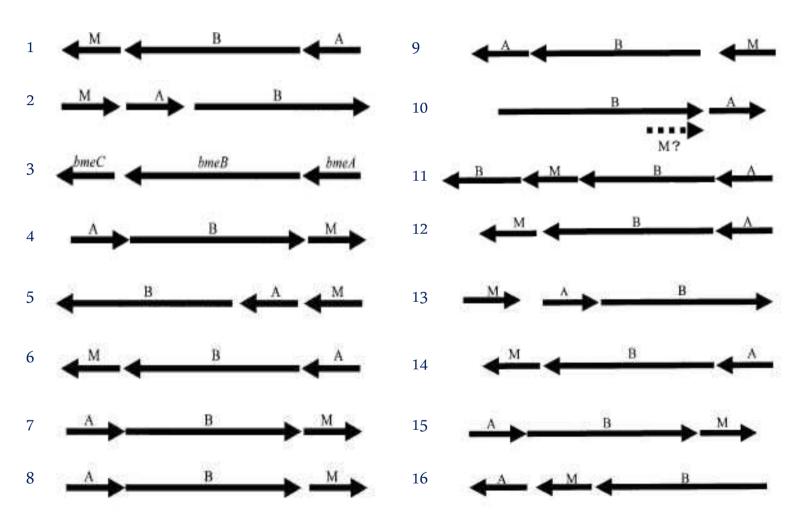
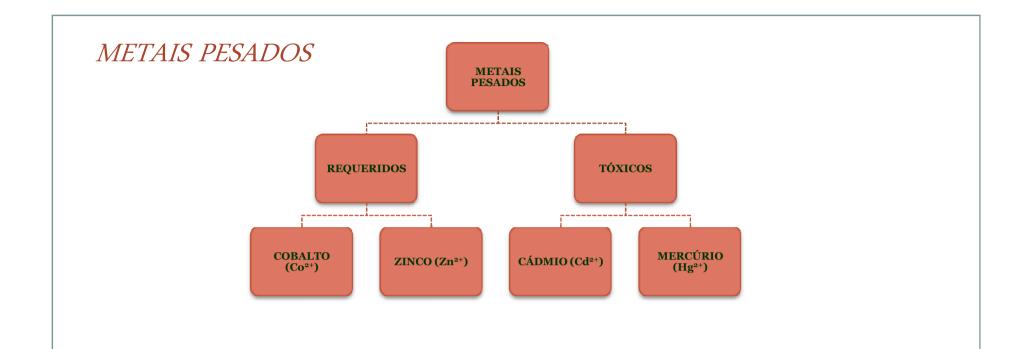



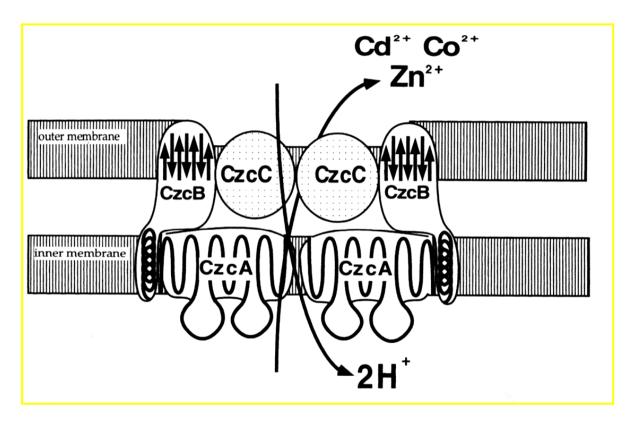
TABLE 4. Antibiotic susceptibilities of various strains^a


557	$MIC (\mu g/ml)^b$										
	CEX ^c	CFZ	ZOX	LEX	CLS	PLB	BCT	VAN	FDA	NVB	PUR
B. fragilis ATCC 25285	128	256	64	256	512	256	2,048	48	2	128	32
FMB271 (ΩbmeB::pGERM)	64	128	16	64	256	64	512	16	1	64	8
FMAB1 (ΩbmeAB::pGERM)	64	128	32	64	256	64	1,024	32	1	96	24
FMA1 (ΩbmeA::pGERM)	64	128	16	64	256	64	512	16	1	64	8
FOM1 (ΩbmeC::pGERM)	128	256	64	256	512	256	2.048	48	2	128	32
E. coli KAM3	8	1	0.0625	16	0.5	2	>2,048	512	4	4	4
KAM3-pTPOUT25	16	2	0.125	32	1	4	>2,048	512	4	4	16
KAM3-pTPIN5	8	1	0.0625	16	0.5	2	>2,048	512	4	4	4

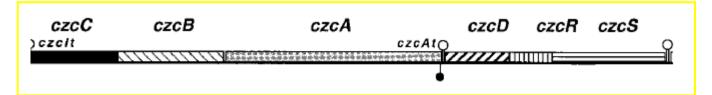
Bacteroides fragilis multidrug efflux (bme)

16 bombas RND (BmeABC)

(Ueda et al., 2005)


VITAMINA B₁₂ ESTABILIZA ENZIMAS

LIGAÇÃO AO GRUPO TIOL; QUELANTE DE Ca²⁺


LIGAÇÃO AOS GRUPOS SULFIDRIL E TIOL

CÁDMIO (Cd²⁺), COBALTO (Co²⁺) E ZINCO (Zn²⁺)

Alcaligenes eutrophus CH34: pMOL30 (AE128)

Silver (1996)

Applied Medical Research

www.scopemed.org

DOI: 10.5455/amr.20150401012721

Intestinal *Bacteroides vulgatus* showing resistance to metals

Aline Ignacio, Viviane Nakano, Mario Julio Avila-Campos

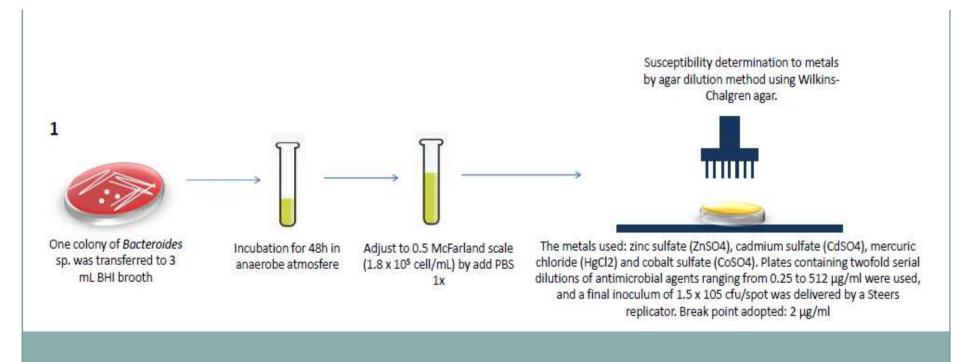
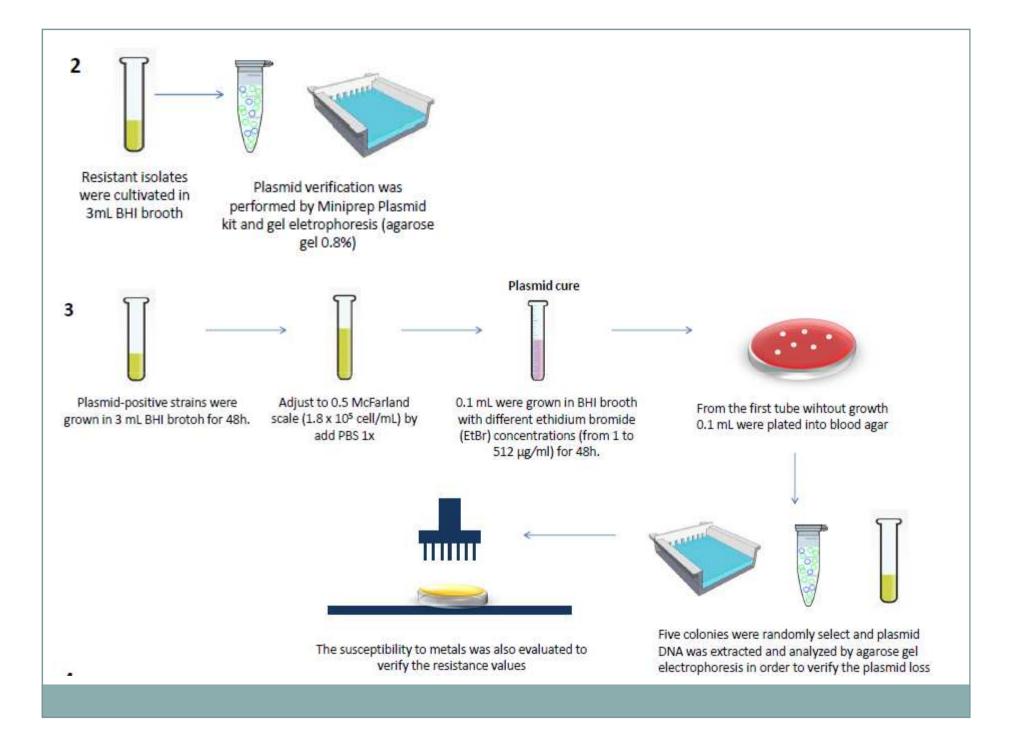



Table 2: Susceptibility to four metal ions of Bacteroidales species

Metals	M	MIC (μg/mL)				
	Range	50%	90%	Percentage		
Human strains (22)				_		
HgCl ₂	1-8	2	4	91		
ZnS0 ₄	2 - ≥512	64	≥512	93		
CoSO	1-≥512	256	≥512	95.5		
3CdSO ₄ .8H ₂ O	1-32	8	16	95.5		
Animal strains (22)						
HgCl ₂	1-8	4	8	77		
ZnSO ₄	1-≥ 512	128	256	95.5		
CoSO	2 - ≥ 512	64	≥512	100		
3CdSO ₄ .8H ₂ O	0.5-64	32	64	91		

Breakpoint for all metals was 2 µg/mL. HgCl₂: Mercuric chloride, ZnSO₄: Zinc sulfate, CoSO₄: Cobalt sulfate, 3CdSO₄.8H₂O: Cadmium sulfate

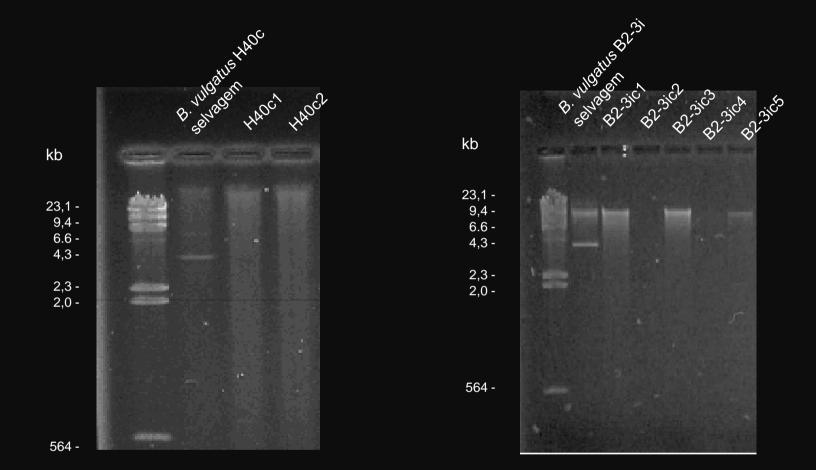
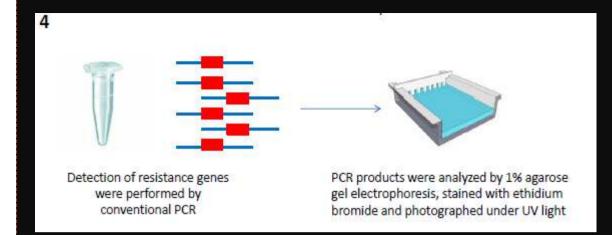
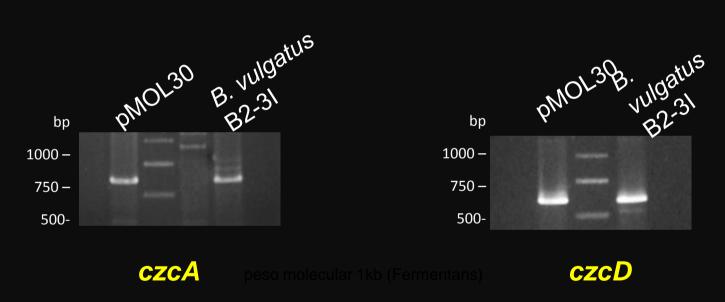




Table 3: Antimicrobial susceptibility and plasmid profile in *B. vulgatus* (wild strains and respective clones) from human and animal origin

Strain/clones	in/clones HgCl ₂ (µg/mL)		$HgCl_2$ (µg/mL) $ZnSO_4$ (µg/mL) $CoSO_4$ (µg/mL)		$CoSO_4$ (μ g/mL)	$3\text{CdSO}_4.8\text{H}_2\text{O} (\mu\text{g/mL})$	Plasmid No. (kb	
Human	i							
B. vulgatus H40ca	4	256	≥512	8	2 (3.0; 5.0)			
B. vulgatus H40clb	2	256	≥512	8	-			
B. vulgatus H40c2b	2	128	≥512	8	-			
Animal	LJ			·				
B. vulgatus B2-3i ^a	2	64	64	32	1 (4.0)			
B. vulgatus B2-3i1b	0,5	64	32	8	-			
B. vulgatus B2-3i2b	1	64	16	8	-			
B. vulgatus B2-3i3b	1	64	32	4	-			
B. vulgatus B2-3i4b	2	32	32	8	-			
B. vulgatus B2-3i5b	1	64	64	8	-			

Breakpoint for all metals was 2 μ g/mL. ^aWild strain, ^bClones from wild strain. *B. vulgatus: Bacteroides vulgatus*

Perspectivas

By-passing a atividade do efluxo → Novas drogas

Inibidores da proteína de membrana externa (TolC)

Entender o papel dos sistemas de efluxo na virulência

Obrigada!